线性回归 (linear regression)可以追溯到19世纪初, 它在回归的各种标准工具中最简单而且最流行。 线性回归基于几个简单的假设: 首先,假设自变量 和因变量 之间的关系是线性的, 即 可以表示为 中元素的加权和,这里通常允许包含观测值的一些噪声; 其次,我们假设任何噪声都比较正常,如噪声遵循正态分布。
第3.1节 线性回归 3.1.1 理论基础 1. 数据
给定一个 维输入: $\mathbf{X} = \left[x{1}, x {2}, \ldots, x_{n} \right]^{T}$
线性模型的权重参数和偏置: $\mathbf{W} = \left[w{1}, w {2}, \dots, w_{n} \right]^{T}, \enspace b$
输出则是输入的加权和: $ {y} = w{1}x {1} + w{2}x {2} + \dots, + w{n}x {n} + b $
房 屋 面 积
房 间 数 量 间
1500
3
300000
2000
4
400000
1200
2
250000
2. 损失函数
目标:根据输入数据 去预测输出
衡量预估质量:用预测值 - 真实值
合并:正对每一个样本都进行评估
损失函数:对每个样本的衡量求均值
3. 优化函数
目标:最小化损失
简化:将 设为1
,则可以将偏置列入权重
显示解:凸函数,最优解满足梯度
4. 优化方法——梯度下降 梯度下降通过不断沿着反梯度方向更新参数求解
4.总结
线性回归是对n
维输入的加权,外加偏差
使用平方损失来衡量预测值与真实值之间的差异
线性回归有显示解
线性回归可以看做是单层的神经网络
小批量随机梯度下降是深度学习默认的求解算法
小批量梯度下降两个重要的超参数是批量大小和学习率
3.1.2 从零实现线性回归 数据、模型、损失函数、优化器
1 2 3 %matplotlib inline import random, torchfrom d2l import torch as d2l
1.数据构建 噪 声 项 :
1 2 3 4 5 6 7 8 9 10 11 def generate_data (w, b, num_examples ): """生成 y = wX + b + 噪声""" X = torch.normal(2 , 0.3 , (num_examples, len (w))) y = torch.matmul(X, w) + b y += torch.normal(0 , 0.2 , y.shape) return X, y.reshape((-1 , 1 )) ture_w = torch.tensor([2 , 0.6 ]) ture_b = 0.2 features, labels = generate_data(ture_w, ture_b, 8000 )
1 features[:3 , :], labels[:3 ]
(tensor([[2.3478, 2.4763],
[1.7897, 2.3384],
[1.6261, 2.0841]]),
tensor([[6.7362],
[5.0191],
[4.6524]]))
1 2 3 4 5 d2l.set_figsize() d2l.plt.scatter(features[:1000 , 0 ].detach().numpy(), labels[:1000 ].detach().numpy(), 1 ) d2l.plt.scatter(features[:1000 , 1 ].detach().numpy(), labels[:1000 ].detach().numpy(), 1 )
<matplotlib.collections.PathCollection at 0x7fe64fc797c0>
2. 数据读取 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 def get_data_iter (batch_size, features, labels ): num_examples = len (features) idxs = list (range (num_examples)) random.shuffle(idxs) for i in range (0 , num_examples, batch_size): batch_idxs = torch.tensor( idxs[i: min (batch_size + i, num_examples)] ) yield features[batch_idxs, :], labels[batch_idxs] batch_size = 10 for X, y in get_data_iter(batch_size, features, labels): print ("训练数据:" , X, '\n' , "训练目标:" , y) break
训练数据: tensor([[2.4767, 1.9958],
[2.2292, 2.3632],
[2.1951, 2.1529],
[2.0536, 1.8707],
[1.6970, 1.8042],
[2.0869, 1.4939],
[2.0516, 2.2665],
[1.8934, 2.2656],
[1.7037, 2.1092],
[1.8330, 1.8787]])
训练目标: tensor([[6.4159],
[6.0410],
[5.9194],
[5.4723],
[4.5526],
[5.0979],
[5.7323],
[5.0205],
[5.0299],
[4.8499]])
3. 构建模型 1 2 3 w = torch.normal(0 , 1 , size=(2 , 1 ), requires_grad=True ) b = torch.ones(1 , requires_grad=True )
1 2 3 4 5 6 def liner_model (X, w, b ): return torch.matmul(X, w) + b liner_model(features, w, b).shape
torch.Size([8000, 1])
4. 定义损失函数 1 2 3 def ms_loss (y_hat, y ): """定义均方损失""" return (y_hat - y.reshape(y_hat.shape)) ** 2 / 2
5. 定义优化器 1 2 3 4 5 6 def sgd (params, lr, batch_size ): """小批量随机梯度下降""" with torch.no_grad(): for param in params: param -= lr * param.grad / batch_size param.grad.zero_()
6. 模型训练 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 lr = 0.1 num_epochs = 5 net_model = liner_model loss = ms_loss for epoch in range (num_epochs): for X, y in get_data_iter(batch_size, features, labels): l = loss(net_model(X, w, b), y) l.sum ().backward() sgd([w, b], lr, batch_size) with torch.no_grad(): train_l = loss(net_model(features, w, b), labels) print (f'epoch {epoch + 1 :2 } , loss {train_l.mean() :.8 f} ' )
epoch 1, loss 0.02702038
epoch 2, loss 0.02084376
epoch 3, loss 0.02002947
epoch 4, loss 0.02400172
epoch 5, loss 0.01999601
7.与真实参数做对比 1 2 print (f'w的误差: {ture_w - w.reshape(ture_w.shape)} ' )print (f'b的误差: {(ture_b - b)} ' )
w的误差: tensor([0.0069, 0.0213], grad_fn=<SubBackward0>)
b的误差: tensor([-0.0697], grad_fn=<RsubBackward1>)
3.1.3 线性回归简单实现 1 2 3 4 import numpy as npimport torchfrom torch.utils import datafrom d2l import torch as d2l
(tensor([2.0000, 0.6000]), 0.2)
1 2 true_w = torch.tensor([2 , 0.6 ], requires_grad=True ) true_b = torch.ones(1 , requires_grad=True )
1 features, labels = generate_data(true_w, true_b, 1000 )
1 2 3 4 5 6 7 8 def load_array (data_arrays, batch_size, is_train=True ): dataset = data.TensorDataset(*data_arrays) return data.DataLoader(dataset, batch_size, shuffle=True ) batch_size = 10 data_iter = load_array((features, labels), batch_size) next (iter (data_iter))
[tensor([[2.5015, 2.3537],
[1.5924, 1.8605],
[2.1028, 2.1819],
[1.8190, 2.0113],
[1.6774, 2.3362],
[1.7908, 2.0683],
[1.7124, 2.2071],
[2.3189, 1.6855],
[2.1480, 2.2916],
[1.5104, 1.6872]]),
tensor([[7.1117],
[5.2422],
[6.9261],
[5.8172],
[5.9285],
[6.1434],
[5.7847],
[6.5754],
[6.5749],
[4.7918]], grad_fn=<StackBackward0>)]
1 net = nn.Sequential(nn.Linear(2 , 1 ))
1 2 net[0 ].weight.data.normal_(0 , 0.1 ) net[0 ].bias.data.fill_(0 )
tensor([0.])
1 2 trainer = torch.optim.SGD(net.parameters(), lr=0.01 )
1 2 3 4 5 6 7 8 9 10 11 num_epochs = 5 for epoch in range (num_epochs): for X, y in data_iter: l = loss(net(X), y) trainer.zero_grad() l.backward(retain_graph=True ) trainer.step() l = loss(net(features), labels) print (f'epoch {epoch + 1 :2 } , loss {l:f} ' )
epoch 1, loss 0.096368
epoch 2, loss 0.077876
epoch 3, loss 0.067644
epoch 4, loss 0.059806
epoch 5, loss 0.054634
1 2 print (f'w的误差: {true_w - w.reshape(true_w.shape)} ' )print (f'b的误差: {(true_b - b)} ' )
w的误差: tensor([0.0495, 0.0135], grad_fn=<SubBackward0>)
b的误差: tensor([0.7791], grad_fn=<SubBackward0>)