


DATA

“Matheus has written the 
best book yet to teach 
you how to go from toy 
models to state-of-the-art 
methods that work on real 
data and solve important, 
practical problems.”

—Sean J. Taylor
Chief Scientist at Motif Analytics

“Causal Inference in 
Python is an accessible 
introduction to causal 
inference, focusing on the 
tools and contexts most 
familiar to the Python data 
analytics community.”

—Nick Huntington-Klein
Professor of Economics and author of 

The Effect: An Introduction to Research 
Design and Causality

Causal Inference in Python

Twitter: @oreillymedia
linkedin.com/company/oreilly-media
youtube.com/oreillymedia 

How many buyers will an additional dollar of online marketing 
attract? Which customers will only buy when given a discount 
coupon? How do you establish an optimal pricing strategy? 
Causal inference is the best way to determine how the levers 
at your disposal affect the business metrics you want to drive. 
And it only requires a few lines of Python code.

In this book, author Matheus Facure explains the largely 
untapped potential of causal inference for estimating impacts 
and effects. Managers, data scientists, and business analysts 
will learn classical causal inference methods, like A/B tests, 
linear regression, propensity score, synthetic controls, and 
difference-in-differences—and modern developments such as 
using machine learning for heterogeneous effect estimation. 
Each method is illustrated by an application in the industry.

This book helps you:

• Learn how to use basic concepts of causal inference 

• Frame a business problem as a causal inference problem

• Understand how bias interferes with causal inference

• Learn how causal effects can differ from person to person

• Use observations of the same customers across time for 
causal inference

• Use geo and switchback experiments when randomization 
isn’t an option

• Examine noncompliance bias and effect dilution

Matheus Facure is an economist and 
senior data scientist at Nubank, the 
biggest FinTech company outside Asia. 
He’s successfully applied causal 
inference in a wide range of business 
scenarios, from automated and real-time 
interest and credit decision-making, 
to cross-selling emails and optimizing 
marketing budgets. He’s the author of 
Causal Inference for the Brave and True.

9 7 8 1 0 9 8 1 4 0 2 5 0

5 7 9 9 9

US $79.99  CAN $99.99
ISBN: 978-1-098-14025-0



Praise for Causal Inference in Python

Causal inference is one of the most important approaches for modern data scientists, but
there’s still a big gap between theory and applications. Matheus has written the best book
yet to teach you how to go from toy models to state-of-the-art methods that work on real

data and solve important, practical problems. I’m excited to finally have the perfect
resource to recommend that clearly explains the latest approaches and provides

detailed code and examples for those who learn by doing.
—Sean J. Taylor, Chief Scientist at Motif Analytics

The analyst who avoids answering all causal questions is limiting themselves greatly, and
the analyst who answers them carelessly is asking for trouble. Facure’s book is an

accessible introduction to causal inference, focusing on the tools and contexts
most familiar to the Python data analytics community

—Nick Huntington-Klein, Professor of Economics and author of
The Effect: An Introduction to Research Design and Causality

Causal inference tools play a major role in guiding decision-making. In this engaging
book, Matheus Facure provides a clear introduction to these tools, paying particular

attention to how to use them in practice. The business applications and detailed
Python code will help you get the job done.
—Pedro H. C. Sant’Anna, Emory University

and Causal Solutions





Matheus Facure

Causal Inference in Python
Applying Causal Inference in the Tech Industry

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing



978-1-098-14025-0

[LSI]

Causal Inference in Python
by Matheus Facure

Copyright © 2023 Matheus Facure Alves. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Nicole Butterfield
Development Editor: Virginia Wilson
Production Editor: Katherine Tozer
Copyeditor: Kim Cofer
Proofreader: James Fraleigh

Indexer: Sue Klefstad
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

July 2023:  First Edition

Revision History for the First Edition
2023-07-14: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098140250 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Causal Inference in Python, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author and do not represent the publisher’s views. While
the publisher and the author have used good faith efforts to ensure that the information and instructions
contained in this work are accurate, the publisher and the author disclaim all responsibility for errors or
omissions, including without limitation responsibility for damages resulting from the use of or reliance
on this work. Use of the information and instructions contained in this work is at your own risk. If any
code samples or other technology this work contains or describes is subject to open source licenses or the
intellectual property rights of others, it is your responsibility to ensure that your use thereof complies
with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781098140250


Table of Contents

Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xi

Part I. Fundamentals

1. Introduction to Causal Inference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3
What Is Causal Inference?                                                                                              3
Why We Do Causal Inference                                                                                        4
Machine Learning and Causal Inference                                                                      5
Association and Causation                                                                                             6

The Treatment and the Outcome                                                                               7
The Fundamental Problem of Causal Inference                                                      8
Causal Models                                                                                                               9
Interventions                                                                                                               10
Individual Treatment Effect                                                                                      12
Potential Outcomes                                                                                                    12
Consistency and Stable Unit Treatment Values                                                     13
Causal Quantities of Interest                                                                                    14
Causal Quantities: An Example                                                                                16

Bias                                                                                                                                   18
The Bias Equation                                                                                                      19
A Visual Guide to Bias                                                                                               21

Identifying the Treatment Effect                                                                                  23
The Independence Assumption                                                                               25
Identification with Randomization                                                                         25

Key Ideas                                                                                                                         28

v



2. Randomized Experiments and Stats Review. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31
Brute-Force Independence with Randomization                                                      31
An A/B Testing Example                                                                                               33
The Ideal Experiment                                                                                                    37
The Most Dangerous Equation                                                                                    38
The Standard Error of Our Estimates                                                                         41
Confidence Intervals                                                                                                     42
Hypothesis Testing                                                                                                         49

Null Hypothesis                                                                                                          51
Test Statistic                                                                                                                 53

p-values                                                                                                                           54
Power                                                                                                                               56
Sample Size Calculation                                                                                                57
Key Ideas                                                                                                                         59

3. Graphical Causal Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  61
Thinking About Causality                                                                                            61

Visualizing Causal Relationships                                                                             63
Are Consultants Worth It?                                                                                        65

Crash Course in Graphical Models                                                                             66
Chains                                                                                                                          67
Forks                                                                                                                             68
Immorality or Collider                                                                                              70
The Flow of Association Cheat Sheet                                                                      71
Querying a Graph in Python                                                                                    72

Identification Revisited                                                                                                 75
CIA and the Adjustment Formula                                                                               76
Positivity Assumption                                                                                                   78
An Identification Example with Data                                                                         78
Confounding Bias                                                                                                          80

Surrogate Confounding                                                                                             81
Randomization Revisited                                                                                          82

Selection Bias                                                                                                                  83
Conditioning on a Collider                                                                                       83
Adjusting for Selection Bias                                                                                      87
Conditioning on a Mediator                                                                                     89

Key Ideas                                                                                                                         90

vi | Table of Contents



Part II. Adjusting for Bias

4. The Unreasonable Effectiveness of Linear Regression. . . . . . . . . . . . . . . . . . . . . . . . . . .  95
All You Need Is Linear Regression                                                                              95

Why We Need Models                                                                                               96
Regression in A/B Tests                                                                                             97
Adjusting with Regression                                                                                      100

Regression Theory                                                                                                       104
Single Variable Linear Regression                                                                         105
Multivariate Linear Regression                                                                              105

Frisch-Waugh-Lovell Theorem and Orthogonalization                                        106
Debiasing Step                                                                                                          107
Denoising Step                                                                                                          109
Standard Error of the Regression Estimator                                                        110
Final Outcome Model                                                                                              111
FWL Summary                                                                                                         112

Regression as an Outcome Model                                                                             114
Positivity and Extrapolation                                                                                       116
Nonlinearities in Linear Regression                                                                          117

Linearizing the Treatment                                                                                       119
Nonlinear FWL and Debiasing                                                                              121

Regression for Dummies                                                                                            122
Conditionally Random Experiments                                                                    122
Dummy Variables                                                                                                     124
Saturated Regression Model                                                                                   127
Regression as Variance Weighted Average                                                           129
De-Meaning and Fixed Effects                                                                               131

Omitted Variable Bias: Confounding Through the Lens of Regression              134
Neutral Controls                                                                                                          135

Noise Inducing Control                                                                                          136
Feature Selection: A Bias-Variance Trade-Off                                                     138

Key Ideas                                                                                                                       139

5. Propensity Score. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  141
The Impact of Management Training                                                                       141
Adjusting with Regression                                                                                          143
Propensity Score                                                                                                          144

Propensity Score Estimation                                                                                  145
Propensity Score and Orthogonalization                                                             146
Propensity Score Matching                                                                                     146
Inverse Propensity Weighting                                                                                149
Variance of IPW                                                                                                       151

Table of Contents | vii



Stabilized Propensity Weights                                                                                155
Pseudo-Populations                                                                                                 156
Selection Bias                                                                                                            157
Bias-Variance Trade-Off                                                                                         158
Positivity                                                                                                                    159

Design- Versus Model-Based Identification                                                            161
Doubly Robust Estimation                                                                                         162

Treatment Is Easy to Model                                                                                    164
Outcome Is Easy to Model                                                                                      167

Generalized Propensity Score for Continuous Treatment                                     169
Key Ideas                                                                                                                       175

Part III. Effect Heterogeneity and Personalization

6. Effect Heterogeneity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  179
From ATE to CATE                                                                                                     179
Why Prediction Is Not the Answer                                                                           181
CATE with Regression                                                                                                183
Evaluating CATE Predictions                                                                                    187
Effect by Model Quantile                                                                                            189
Cumulative Effect                                                                                                        192
Cumulative Gain                                                                                                          194
Target Transformation                                                                                                197
When Prediction Models Are Good for Effect Ordering                                      199

Marginal Decreasing Returns                                                                                 199
Binary Outcomes                                                                                                     200

CATE for Decision Making                                                                                        201
Key Ideas                                                                                                                       205

7. Metalearners. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  207
Metalearners for Discrete Treatments                                                                      208

T-Learner                                                                                                                   209
X-Learner                                                                                                                  212

Metalearners for Continuous Treatments                                                                217
S-Learner                                                                                                                   218
Double/Debiased Machine Learning                                                                    223

Key Ideas                                                                                                                       230

viii | Table of Contents



Part IV. Panel Data

8. Difference-in-Differences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  235
Panel Data                                                                                                                     236
Canonical Difference-in-Differences                                                                        239

Diff-in-Diff with Outcome Growth                                                                      240
Diff-in-Diff with OLS                                                                                              242
Diff-in-Diff with Fixed Effects                                                                               243
Multiple Time Periods                                                                                             244
Inference                                                                                                                    246

Identification Assumptions                                                                                        249
Parallel Trends                                                                                                          249
No Anticipation Assumption and SUTVA                                                           251
Strict Exogeneity                                                                                                      252
No Time Varying Confounders                                                                             252
No Feedback                                                                                                             253
No Carryover and No Lagged Dependent Variable                                            254

Effect Dynamics over Time                                                                                        255
Diff-in-Diff with Covariates                                                                                       257
Doubly Robust Diff-in-Diff                                                                                        260

Propensity Score Model                                                                                          260
Delta Outcome Model                                                                                             260
All Together Now                                                                                                     261

Staggered Adoption                                                                                                     263
Heterogeneous Effect over Time                                                                            268
Covariates                                                                                                                  272

Key Ideas                                                                                                                       273

9. Synthetic Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  275
Online Marketing Dataset                                                                                          275
Matrix Representation                                                                                                278
Synthetic Control as Horizontal Regression                                                            280
Canonical Synthetic Control                                                                                      284
Synthetic Control with Covariants                                                                            287
Debiasing Synthetic Control                                                                                      291
Inference                                                                                                                       295
Synthetic Difference-in-Differences                                                                         298

DID Refresher                                                                                                           298
Synthetic Controls Revisited                                                                                  298
Estimating Time Weights                                                                                        301
Synthetic Control and DID                                                                                     303

Key Ideas                                                                                                                       305

Table of Contents | ix



Part V. Alternative Experimental Designs

10. Geo and Switchback Experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  309
Geo-Experiments                                                                                                         310
Synthetic Control Design                                                                                           311

Trying a Random Set of Treated Units                                                                  314
Random Search                                                                                                        316

Switchback Experiment                                                                                              319
Potential Outcomes of Sequences                                                                          321
Estimating the Order of Carryover Effect                                                            321
Design-Based Estimation                                                                                        324
Optimal Switchback Design                                                                                   328
Robust Variance                                                                                                       331

Key Ideas                                                                                                                       334

11. Noncompliance and Instruments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  337
Noncompliance                                                                                                            337
Extending Potential Outcomes                                                                                  339
Instrument Identification Assumptions                                                                   342
First Stage                                                                                                                      344
Reduced Form                                                                                                              345
Two-Stage Least Squares                                                                                             346
Standard Error                                                                                                             347
Additional Controls and Instruments                                                                      349

2SLS by Hand                                                                                                            351
Matrix Implementation                                                                                           351

Discontinuity Design                                                                                                  353
Discontinuity Design Assumptions                                                                       355
Intention to Treat Effect                                                                                          356
The IV Estimate                                                                                                        357
Bunching                                                                                                                   358

Key Ideas                                                                                                                       359

12. Next Steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  361
Causal Discovery                                                                                                         362
Sequential Decision Making                                                                                      362
Causal Reinforcement Learning                                                                                363
Causal Forecasting                                                                                                       363
Domain Adaptation                                                                                                     364
Closing Thoughts                                                                                                         365

Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  367

x | Table of Contents



Preface

Picture yourself as a new data scientist who’s just starting out in a fast-growing and
promising startup. Although you haven’t mastered machine learning, you feel pretty
confident about your skills. You’ve completed dozens of online courses on the subject
and even gotten a few good ranks in prediction competitions. You are now ready to
apply all that knowledge to the real world and you can’t wait for it. Life is good.

Then, your team leader comes with a graph that looks something like this:

And an accompanying question: “Hey, we want you to figure out how many addi‐
tional customers paid marketing is really bringing us. When we turned it on, we defi‐
nitely saw some customers coming from the paid marketing channel, but it looks like
we also had a drop in organic applications. We think some of the customers from paid
marketing would have come to us even without paid marketing.” Well…you were
expecting a challenge, but this?! How could you know what would have happened
without paid marketing? I guess you could compare the total number of applications,
organic and paid, before and after turning on the marketing campaign. But in a fast

xi



growing and dynamic company, how would you know that nothing else changes
when they launch the campaign (see Figure P-1)?

Figure P-1. Fast-growing company with an ever-changing product

Changing gears a bit (or not at all), place yourself in the shoes of a brilliant risk ana‐
lyst. You were just hired by a lending company and your first task is to perfect its
credit risk model. The goal is to have a good automated decision-making system that
assesses the customers’ credit worthiness (underwrites them) and decides how much
credit the company can lend them. Needless to say, errors in this system are incredi‐
bly expensive, especially if the given credit line is high.

A key component of this automated decision making is understanding the impact
more credit lines have on the likelihood of customers defaulting. Can they manage a
huge chunk of credit and pay it back or will they go down a spiral of overspending
and unmanageable debt? To model this behavior, you start by plotting credit average
default rates by given credit lines. To your surprise, the data displays this unexpected
pattern:

xii | Preface



The relationship between credit and defaults seems to be negative. How come giving
more credit results in lower chances of defaults? Rightfully suspicious, you go talk to
other analysts in an attempt to understand this. It turns out the answer is very simple:
to no one’s surprise, the lending company gives more credit to customers that have
lower chances of defaulting. So, it is not the case that high lines reduce default risk,
but rather, the other way around. Lower risk increases the credit lines. That explains
it, but you still haven’t solved the initial problem: how to model the relationship
between credit risk and credit lines with this data. Surely you don’t want your system
to think more lines implies lower chances of default. Also, naively randomizing lines
in an A/B test just to see what happens is pretty much off the table, due to the high
cost of wrong credit decisions.

What both of these problems have in common is that you need to know the impact of
changing something that you can control (marketing budget and credit limit) on
some business outcome you wish to influence (customer applications and default
risk). Impact or effect estimation has been the pillar of modern science for centuries,
but only recently have we made huge progress in systematizing the tools of this trade
into the field that is coming to be known as causal inference. Additionally, advance‐
ments in machine learning and a general desire to automate and inform decision-
making processes with data has brought causal inference into the industry and public
institutions. Still, the causal inference toolkit is not yet widely known by decision
makers or data scientists.

Hoping to change that, I wrote Causal Inference for the Brave and True, an online
book that covers the traditional tools and recent developments from causal inference,
all with open source Python software, in a rigorous, yet lighthearted way. Now, I’m
taking that one step further, reviewing all that content from an industry perspective,
with updated examples and, hopefully, more intuitive explanations. My goal is for this
book to be a starting point for whatever question you have about making decisions
with data.

Prerequisites
This book is an introduction to causal inference in Python, but it is not an introduc‐
tory book in general. It’s introductory because I’ll focus on application, rather than
rigorous proofs and theorems of causal inference; additionally, when forced to
choose, I’ll opt for a simpler and intuitive explanation, rather than a complete and
complex one.

It is not introductory in general because I’ll assume some prior knowledge about
machine learning, statistics, and programming in Python. It is not too advanced
either, but I will be throwing in some terms that you should know beforehand.

Preface | xiii



For example, here is a piece of text that might appear:

The first thing you have to deal with is the fact that continuous variables have
P T = t = 0 everywhere. That’s because the probability is the area under the density
and the area of a single point is always zero. A way around this is to use the conditional
density f T X  instead of the conditional probability P T = t X .

I won’t provide much explanation on what a density is and why it is different from a
probability. Here is another example, this time about machine learning:

Alternatively, you can use machine learning models to estimate the propensity score.
But you have to be more careful. First, you must ensure that your ML model outputs a
calibrated probability prediction. Second, you need to use out-of-fold predictions to
avoid bias due to overfitting.

Here, I won’t explain what a machine learning model is, nor what it means for it to
have calibrated predictions, what overfitting is, or out-of-fold prediction. Since those
are fairly basic data science concepts, I’ll expect you to know them from the start.

In fact, here is a list of things I recommend you know before reading this book:

• Basic knowledge of Python, including the most commonly used data scientist
libraries: pandas, NumPy, Matplotlib, scikit-learn. I come from an economics
background, so you don’t have to worry about me using very fancy code. Just
make sure you know the basics pretty well.

• Knowledge of basic statistical concepts, like distributions, probability, hypothesis
testing, regression, noise, expected values, standard deviation, and independence.
Chapter 2 will include a statistical review, in case you need a refresher.

• Knowledge of basic data science concepts, like machine learning model, cross-
validation, overfitting, and some of the most used machine learning models (gra‐
dient boosting, decision trees, linear regression, logistic regression).

• Knowledge of high school math, such as functions, logarithms, roots, matrices,
and vectors, and some college-level math, such as derivatives and integrals.

The main audience of this book is data scientists working in the industry. If you fit
this description, there is a pretty good chance that you cover the prerequisites that
I’ve mentioned. Also, keep in mind that this is a broad audience, with very diverse
skill sets. For this reason, I might include some notes, paragraphs, or sections that are
meant for the most advanced reader. So don’t worry if you don’t understand every
single line in this book. You’ll still be able to extract a lot from it. And maybe you’ll
come back for a second read once you’ve mastered some of the basics.

xiv | Preface



Outline
Part I covers the basics concepts on causal inference. Chapter 1 introduces the key
concepts of causal inference as you use them to reason about the effect of cutting pri‐
ces. Chapter 2 talks about the importance of A/B testing (or randomized control trial)
not only as an instrument for decision making, but as the gold standard you will use
to benchmark the other causal inference tools. This will also be a great opportunity to
review some statistical concepts. Chapter 3 is mostly theoretical, covering causal
identification and graphical models, a powerful method for (literally) drawing your
assumptions about the causal process and reasoning about what you need to do in
order to untangle association from causation. After finishing Part I, you should have
the basic foundation to think in terms of causal inference.

In Part II you’ll be introduced to two of the workhorses for untangling causation
from correlation: linear regression and propensity weighting. Chapter 4 covers linear
regression, but not from a perspective that most data scientists are familiar with.
Rather, you’ll learn about an important bias removal technique: orthogonalization.
Chapter 5 covers propensity score and doubly robust estimation.

Part III takes what you saw in Part II and adds machine learning and big data to the
mix. You’ll look into causal inference as a tool for personalized decision making.
Through the eyes of a food delivery service, you’ll try to understand which customers
should be given discount coupons to capture their loyalty and which customers don’t
need that extra incentive. In Chapter 6, you’ll enter the world of heterogeneous treat‐
ment effects. Chapter 7 goes into some of the recent developments in the intersection
between machine learning and causal inference. In this chapter, you’ll learn methods
like the T-, X-, and S-learners and Double/Debiased Machine Learning, all in the con‐
text of treatment personalization.

Part IV adds the time dimension to causal inference. In some situations, you’ll have
records of the same customers or markets across multiple time periods, which builds
up to what is called a panel dataset. You’ll learn how to leverage panels to uncover the
true impact of paid marketing, even without being able to randomize who gets to see
your advertisements. Chapter 8 will walk you through difference-in-differences,
including some of the recent developments in this literature. Chapter 9 will cover
synthetic control (and variations of it), also in the context of understanding the
impact of marketing campaigns.

Finally, Part V dives into alternative experiment designs, for when randomization is
off the table. Chapter 10 will cover geo-experiments, where the goal is to find regions
to treat and regions to serve as controls, and switchback experiments, for when you
have very few units of analysis and wish to figure out the treatment effect by turning
the treatment on and off for the same unit. Chapter 11 dives into experiments with

Preface | xv



noncompliance and introduces you to instrumental variables (IV). It also briefly cov‐
ers discontinuity design.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/matheusfacure/causal-inference-in-python-code.

If you have a technical question or a problem using the code examples, please email
support@oreilly.com.

xvi | Preface

https://github.com/matheusfacure/causal-inference-in-python-code
mailto:support@oreilly.com


This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Causal Inference in
Python by Matheus Facure (O’Reilly). Copyright 2023 Matheus Facure Alves,
978-1-098-14025-0.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit https://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-889-8969 (in the United States or Canada)
707-829-7019 (international or local)
707-829-0104 (fax)
support@oreilly.com
https://www.oreilly.com/about/contact.html

Preface | xvii

mailto:permissions@oreilly.com
https://oreilly.com
https://oreilly.com
mailto:support@oreilly.com
https://www.oreilly.com/about/contact.html


We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/causal-inference-in-python.

For news and information about our books and courses, visit https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media.

Follow us on Twitter: https://twitter.com/oreillymedia.

Watch us on YouTube: https://youtube.com/oreillymedia.

Acknowledgments
First, I would like to express my gratitude to my amazing editor, Virginia Wilson. I
am grateful for all the feedback and patience you have shown me. Without you, this
book would not have been written. I am also thankful for Nicole Butterfield and the
entire team at O’Reilly for supporting my first work and putting so much trust in me.
Also, a special thanks to Danny Elfanbaum, who helped me out a lot with technical
issues during the writing process.

I am indebted to all the technical reviewers who dedicated their precious time to
review this book. Thank you, Laurence Wong, for the very detailed comments and for
suggesting important additions to the book. Thank you, Adrian Keister, for your
thorough review, incredibly pertinent critiques, for trying out the code and making
very relevant suggestions on how to make it clearer. The book has greatly improved
thanks to your feedback. Jorge Reyes, thanks for leaving no stone unturned and spot‐
ting very hard-to-find mistakes in the technical notation, for all the relevant ques‐
tions you made, and for all the kind compliments. Thank you, Roni Kobrosly, for
your comments on how to make the book more accessible and engaging. Thank you,
Subhasish Misra, for the helpful feedback, especially on Chapter 5. Shawhin Talebi, I
appreciate the suggestions you have made on very pertinent topics to add to the book.

Thank you to all those who provided me with more content-specific feedback. Thank
you, Guilherme Jardim Duarte, for all your help with all things related to Pearlian
causality, especially in reviewing Chapter 3. Many thanks to Henrique Lopes and
Juliano Garcia for your review on the intersection between causal inference and busi‐
ness applications. Chapters 4, 6, and 7 were greatly improved with your feedback.
Raphael Bruce, I’m very grateful for your honest and precise feedback on Chapter 4.
Thank you, Luis Moneda, for your expertise, for all our great talks about causality,
and for helping me review Chapter 1. Thank you, Denis Reis, for the review of Chap‐
ter 2. Statistics is a tricky subject, and having you as a reviewer took a lot of anxiety
off my shoulders.

Writing about a technical topic can sometimes be a solitary endeavor, which is why I
feel incredibly fortunate for all the support I got from such amazing and respected
professionals: Sean J. Taylor, Pedro H. C. Sant’Anna, Nick C. Huntington-Klein,

xviii | Preface

https://oreil.ly/causal-inference-in-python
https://oreilly.com
https://linkedin.com/company/oreilly-media
https://twitter.com/oreillymedia
https://youtube.com/oreillymedia


Carlos Cinelli, Joshua Angrist and Scott Cunningham. Without your kind feedback, I
would have likely given up long ago.

It is a blessing to work in a field that has such helpful and solicitous researchers. I am
deeply grateful to Kaspar Wüthrich, for your patience with my synthetic control ques‐
tions and for reviewing the section on synthetic control t-test. Jinglong Zhao, I greatly
appreciate your work on nontraditional experiment design. Thanks for helping me
with the questions I had with synthetic control and switchback experiment design.
Peter Hull, thanks for always surprising me with the intricacies of linear regression.

Thank you to all the great academics I’ve interacted with, who have made me think
more clearly about causality: Pedro H. C. Sant’Anna, Carlos Cinelli, Nick C.
Huntington-Klein, and Peter Hull. I’m also grateful for my friends and colleagues
from Nubank, who I can always count on to discuss and propose the most interesting
and challenging causal inference problems: Arthur Goes, Nilo Kruchelski, Pedro Igor,
Tatyana Zabanova, Diandra Kubo, Pedro Bairão, Fernanda Leal, Murilo Nicolau,
Mariana Sanches, Victor Dalla, Euclides Filho, Guilherme Peixoto, Silvano Filho,
Alexandre Floriano, Ana Ortega, Hector Lira, Lucas Estevam, Risk Slangen, and
André Segalla.

Edigar Antonio Lutero Alves, thanks for reading this book and providing your criti‐
cal and accurate feedback. You have always been an amazing father and a role model.

Elis Jordão Stropa, thank you for staying by my side and supporting my crazy ideas
and projects. Thank you for your patience with me while this book was being written
at the same time Francisco came into the world. You are a great wife and a great
mother.

Preface | xix





PART I

Fundamentals





CHAPTER 1

Introduction to Causal Inference

In this first chapter I’ll introduce you to a lot of the fundamental concepts of causal
inference as well as its main challenges and uses. Here, you will learn a lot of jargon
that will be used in the rest of the book. Also, I want you to always keep in mind why
you need causal inference and what you can do with it. This chapter will not be about
coding, but about very important first concepts of causal inference.

What Is Causal Inference?
Causality is something you might know as a dangerous epistemological terrain you
must avoid going into. Your statistics teacher might have said over and over again that
“association is not causation” and that confusing the two would cast you to academic
ostracism or, at the very least, be severely frowned upon. But you see, that is the
thing: sometimes, association is causation.

We humans know this all too well, since, apparently, we’ve been primed to take asso‐
ciation for causation. When you decide not to drink that fourth glass of wine, you
correctly inferred that it would mess you up on the next day. You are drawing from
past experience: from nights when you drank too much and woke up with a head‐
ache; from nights you took just one glass of wine, or none at all, and nothing hap‐
pened. You’ve learned that there is something more to the association between
drinking and hangovers. You’ve inferred causality out of it.

On the flip side, there is some truth to your stats teacher’s warnings. Causation is a
slippery thing. When I was a kid, I ate calamari doré twice and both times it ended
terribly, which led me to conclude I was allergic to squid (and clam, octopus, and any
other type of sea invertebrate). It took me more than 20 years to try it again. When I
did, it was not only delicious, but it also caused me no harm. In this case, I had con‐
fused association with causation. This was a harmless confusion, as it only deprived

3



me of delicious seafood for some years, but mistaking association for causation can
have much more severe consequences. If you invest in the stock market, you’ve prob‐
ably been through a situation where you decided to put money in just before a steep
increase in prices, or to withdraw just before everything collapsed. This likely
tempted you to think you could time the market. If you managed to ignore that temp‐
tation, good for you. But many fall for it, thinking that their intuition is causally
linked to the erratic movements of stocks. In some situations, this belief leads to risk‐
ier and riskier bets until, eventually, almost everything is lost.

In a nutshell, association is when two quantities or random variables move together,
whereas causality is when change in one variable causes change in another. For exam‐
ple, you could associate the number of Nobel Prizes a country has with the per-capita
consumption of chocolate, but even though these variables might move together, it
would be foolish to think one causes the other. It’s easy to see why association doesn’t
imply causation, but equating the two is a whole different matter. Causal inference is
the science of inferring causation from association and understanding when and why
they differ.

Why We Do Causal Inference
Causal inference can be done for the sole purpose of understanding reality. But there
is often a normative component to it. The reason you’ve inferred that too much
drinking causes headaches is that you want to change your drinking habits to avoid
the pain. The company you work for wants to know if marketing costs cause growth
in revenues because, if they do, managers can use it as a leverage to increase profits.
Generally speaking, you want to know cause-and-effect relationships so that you can
intervene on the cause to bring upon a desired effect. If you take causal inference to the
industry, it becomes mostly a branch of the decision-making sciences.

Since this book is mostly industry focused, it will cover the part of causal inference
that is preoccupied with understanding the impact of interventions. What would hap‐
pen if you used another price instead of this price you’re currently asking for your
merchandise? What would happen if you switch from this low-sugar diet you’re on to
that low-fat diet? What will happen to the bank’s margins if it increases the customers’
credit line? Should the government give tablets to every kid in school to boost their
reading test score or should it build an old-fashioned library? Is marrying good for
your personal finances or are married couples wealthier just because wealthy people
are more likely to attract a partner in the first place? These questions are all practical.
They stem from a desire to change something in your business or in your life so that
you can be better off.

4 | Chapter 1: Introduction to Causal Inference



Machine Learning and Causal Inference
If you take a deeper look at the types of questions you want to answer with causal
inference, you will see they are mostly of the “what if ” type. I’m sorry to be the one
that says it, but machine learning (ML) is just awful at those types of questions.

ML is very good at answering prediction questions. As Ajay Agrawal, Joshua Gans,
and Avi Goldfarb put it in the book Prediction Machines (Harvard Business Review
Press), “the new wave of artificial intelligence does not actually bring us intelligence
but instead a critical component of intelligence—prediction.” You can do all sorts of
beautiful things with machine learning. The only requirement is to frame your prob‐
lems as prediction ones. Want to translate from English to Portuguese? Then build an
ML model that predicts Portuguese sentences when given English sentences. Want to
recognize faces? Then create an ML model that predicts the presence of a face in a
subsection of a picture.

However, ML is not a panacea. It can perform wonders under rigid boundaries and
still fail miserably if its data deviates a little from what the model is accustomed to. To
give another example from Prediction Machines, “in many industries, low prices are
associated with low sales. For example, in the hotel industry, prices are low outside
the tourist season, and prices are high when demand is highest and hotels are full.
Given that data, a naive prediction might suggest that increasing the price would lead
to more rooms sold.”

Machine learning uses associations between variables to predict one from the other. It
will work incredibly well as long as you don’t change the variables it is using to make
predictions. This completely defeats the purpose of using predictive ML for most
decision making that involves interventions.

The fact that most data scientists know a lot of ML but not much about causal infer‐
ence leads to an abundance of ML models being deployed where they are not useful
for the task at hand. One of the main goals of companies is to increase sales or usage.
Yet, an ML model that just predicts sales is oftentimes useless—if not harmful—for
this purpose. This model might even conclude something nonsensical, as in the
example where high volumes of sales are associated with high prices. Yet, you’d be
surprised by how many companies implement predictive ML models when the goal
they have in mind has nothing to do with predictions.

This does not mean that ML is completely useless for causal inference. It just means
that, when naively applied, it often does more harm than good. But if you approach
ML from a different angle, as a toolbox of powerful models rather than purely predic‐
tive machines, you’ll start to see how they can connect to the goals of causal infer‐
ence. In Part III I’ll show what you need to watch out for when mixing ML and causal
inference and how to repurpose common ML algorithms, like decision trees and gra‐
dient boosting, to do causal inference.

Machine Learning and Causal Inference | 5



Association and Causation
Intuitively, you kind of know why association is not causation. If someone tells you
that top-notch consulting causes your business to improve, you are bound to raise an
eyebrow. How can you know if the consulting firm is actually causing business to
improve or if it is just that only flourishing businesses have the luxury to hire those
services?

To make things a bit more tangible, put yourself in the shoes of an online market‐
place company. Small and medium-sized businesses use your online platform to
advertise and sell their products. These businesses have complete autonomy in stuff
like setting prices and when to have sales. But it is in the best interest of your com‐
pany that these businesses flourish and prosper. So, you decide to help them by giving
guidance on how, if, and when to set up a sales campaign where they announce a
temporary price drop to consumers. To do that, the first thing you need to know is
the impact of lowering prices on units sold. If the gains from selling more compensate
for the loss of selling cheaper, sales will be a good idea. If you hadn’t already noticed,
this is a causal question. You need to answer how many additional units a business
would have sold had they lowered prices compared to not doing anything.

Needless to say, this is a complicated question; maybe too complicated for the begin‐
ning of this book. Different businesses operate within your platform. Some sell food;
some sell clothes. Some sell fertilizers and agricultural products. As a result, price cuts
might have different impacts depending on the type of business. For instance, it
might be a good idea for a clothing business to announce lower prices one week prior
to Father’s Day. Yet, a similar price drop for an agribusiness will probably do very lit‐
tle. So, let’s simplify the problem a bit. Let’s focus your attention on only one type of
business: those that sell kids’ toys. Also, let’s focus your attention on one period of the
year: December, before Christmas. For now, you’ll just try to answer how cutting pri‐
ces during these periods increases sales so you can pass this information along to the
businesses operating in the kids’ toy industry, allowing them to make better decisions.

To decide if sales is a good idea, you can leverage information from multiple kids’
toys businesses. This data is stored in a pandas data frame for you to access. Here are
the first few rows for you to get a sense of what you are dealing with:

store weeks_to_xmas avg_week_sales is_on_sale weekly_amount_sold
0 1 3 12.98 1 219.60
1 1 2 12.98 1 184.70
2 1 1 12.98 1 145.75
3 1 0 12.98 0 102.45
4 2 3 19.92 0 103.22
5 2 2 19.92 0 53.73

6 | Chapter 1: Introduction to Causal Inference



The first column is the store’s unique identifier (ID). You have weekly data for each
store in the month of December. You also have information about the size of each
business in terms of average products sold per week during that year. A boolean col‐
umn (0 or 1) flags the business as having a sale at the time. The last column shows the
average weekly sales of that store during that week.

Unit of Analysis

The unit of analysis in a causal inference study is usually the thing
you wish to intervene on (treat). In most cases, the unit of analysis
will be people, as when you want to know the effect of a new prod‐
uct on customer retention. But it is not uncommon to have other
types of units. For instance, in this chapter’s example, the unit of
analysis is business. In this same example, you could also try to
answer when is the best moment to have sales, in which case the
unit of analysis would be a time period (week, in this case).

The Treatment and the Outcome
Now that you have some data to look at, it’s time to learn our first bit of technicality.
Let’s call Ti the treatment for unit i:

Ti =
1 if unit i received the treatment
0 otherwise

The treatment here doesn’t need to be medicine or anything from the medical field.
Instead, it is just a term I’ll use to denote some intervention for which I want to know
the effect of. In this case, the treatment is simply a price drop for one of the busi‐
nesses inside your online platform, represented by the column is_on_sale.

Treatment Notation

In some texts and later on in this book, you’ll sometimes see D
instead of T to denote the treatment. D will avoid much confusion
when you have a time dimension to your causal problems.

Additionally, I’ll be referring to weekly_amount_sold (the variable that I want to
influence here) as the outcome. I’ll represent the outcome for unit i with Y i. With
these two new concepts, I can restate the goal of causal inference as the process of
learning the impact T has on Y. In our example, this amounts to figuring out the
effect of is_on_sale on weekly_amount_sold.

Association and Causation | 7



The Fundamental Problem of Causal Inference
Here is where things get interesting. The fundamental problem of causal inference is
that you can never observe the same unit with and without treatment. It is as if you
have two diverging roads and can only know what lies ahead of the one taken. To
fully appreciate this issue, let’s go back to our example and plot the outcome by the
treatment, that is, weekly_amount_sold by is_on_sale. You can immediately see that
the stores that dropped their price sell a lot more (see Figure 1-1).

Figure 1-1. Amount sold per week during sales (1) and without sales (0)

This also matches our intuition about how the world works: people buy more when
prices are low and sales (usually) means lower prices. This is very nice, as causal
inference goes hand in hand with expert knowledge. But you shouldn’t be too care‐
less. It is probably the case that giving and advertising discounts will make customers
buy more. But this much more? From the plot in Figure 1-1, it looks like the amount
sold is about 150 units higher, on average, when a sale is going on than otherwise.
This sounds suspiciously high, since the range of units sold when there is no sale is
about 0 to 50. If you scratch your brains a bit, you can start to see that you might be
mistaking association for causation. Maybe it is the case that only larger businesses,
which are the ones that sell the most anyway, can afford to do aggressive price drops.
Maybe businesses have sales closer to Christmas and that’s when customers buy the
most anyway.

The point is, you would only be certain about the true effect of price cuts on units
sold if you could observe the same business (unit), at the same time, with and without
sales going on. Only if you compare these two counterfactual situations will you be
sure about the effect of price drops. However, as discussed earlier, the fundamental
problem of causal inference is that you simply can’t do that. Instead, you’ll need to
come up with something else.

8 | Chapter 1: Introduction to Causal Inference



Causal Models
You can reason about all these problems intuitively, but if you want to go beyond sim‐
ple intuition, you need some formal notation. This will be our everyday language to
speak about causality. Think of it as the common tongue we will use with fellow prac‐
titioners of the arts of causal inference.

A causal model is a series of assignment mechanisms denoted by . In these mecha‐
nisms, I’ll use u to denote variables outside the model, meaning I am not making a
statement about how they are generated. All the others are variables I care very much
about and are hence included in the model. Finally, there are functions f  that map
one variable to another. Take the following causal model as an example:

T f t ut

Y f y T, uy

With the first equation, I’m saying that ut, a set of variables I’m not explicitly model‐
ing (also called exogenous variables), causes the treatment T via the function f t. Next,
T alongside another set of variables uy (which I’m also choosing not to model) jointly
causes the outcome Y via the function f y. uy is in this last equation to say that the
outcome is not determined by the treatment alone. Some other variables also play a
role in it, even if I’m choosing not to model them. Bringing this to the sales example,
it would mean that weekly_amount_sold is caused by the treatment is_on_sale and
other factors that are not specified, represented as u. The point of u is to account for
all the variation in the variables caused by it that are not already accounted for by the
variables included in the model—also called endogenous variables. In our example, I
could say that price drops are caused by factors—could be business size, could be
something else—that are not inside the model:

IsOnSales f t ut

AmountSold f y IsOnSales, uy

I’m using  instead of = to explicitly state the nonreversibility of causality. With the
equals sign, Y = T + X is equivalent to T = Y − X, but I don’t want to say that T caus‐
ing Y is equivalent to Y causing T. Having said that, I’ll often refrain from using 
just because it’s a bit cumbersome. Just keep in mind that, due to nonreversibility of
cause and effects, unlike with traditional algebra, you can’t simply throw things
around the equal sign when dealing with causal models.

If you want to explicitly model more variables, you can take them out of u and
account for them in the model. For example, remember how I said that the large

Association and Causation | 9



difference you are seeing between price cuts and no price cuts could be because larger
businesses can engage in more aggressive sales? In the previous model, BusinessSize is
not explicitly included in the model. Instead, its impact gets relegated to the side,
with everything else in u. But I could model it explicitly:

BusinessSize f s us

IsOnSales f t BusinessSize, ut

AmountSold f y IsOnSales, BusinessSize, uy

To include this extra endogenous variable, first, I’m adding another equation to rep‐
resent how that variable came to be. Next, I’m taking BusinessSize out of ut. That is,
I’m no longer treating it as a variable outside the model. I’m explicitly saying that
BusinessSize causes IsOnSales (along with some other external factors that I’m still
choosing not to model). This is just a formal way of encoding the beliefs that bigger
businesses are more likely to cut prices. Finally, I can also add BusinessSize to the last
equation. This encodes the belief that bigger businesses also sell more. In other
words, BusinessSize is a common cause to both the treatment IsOnSales and the out‐
come AmountSold.

Since this way of modeling is probably new to you, it’s useful to link it to something
perhaps more familiar. If you come from economics or statistics, you might be used
to another way of modeling the same problem:

AmountSoldi = α + β1IsOnSalesi + β2BusinessSizei + ei

It looks very different at first, but closer inspection will reveal how the preceding
model is very similar to the one you saw earlier. First, notice how it is just replacing
the final equation in that previous model and opening up the f y function, stating
explicitly that endogenous variables IsOnSales and BusinessSize are linearly and addi‐
tively combined to form the outcome AmountSold. In this sense, this linear model
assumes more than the one you saw earlier. You can say that it imposes a functional
form to how the variables relate to each other. Second, you are not saying anything
about how the independent (endogenous) variables—IsOnSales and BusinessSize—
come to be. Finally, this model uses the equals sign, instead of the assignment opera‐
tor, but we already agreed not to stress too much about that.

Interventions
The reason I’m taking my time to talk about causal models is because, once you have
one, you can start to tinker with it in the hopes of answering a causal question. The
formal term for this is intervention. For example, you could take that very simple

10 | Chapter 1: Introduction to Causal Inference



causal model and force everyone to take the treatment t0. This will eliminate the nat‐
ural causes of T, replacing them by a single constant:

T t0

Y f y T, uy

This is done as a thought experiment to answer the question “what would happen to
the outcome Y if I were to set the treatment to t0?” You don’t actually have to inter‐
vene on the treatment (although you could and will, but later). In the causal inference
literature, you can refer to these interventions with a do .  operator. If you want to
reason about what would happen if you intervene on T, you could write do T = t0 .

Expectations

I’ll use a lot of expectations and conditional expectations from now
on. You can think about expectations as the population value that
the average is trying to estimate. E X  denotes the (marginal)
expected values of the random variable X. It can be approximated
by the sample average of X. E Y X = x  denotes the expected value
of Y when X = x. This can be approximated by the average of Y
when X = x.

The do .  operator also gives you a first glance at why association is different from
causation. I have already argued how high sales volume for a business having a sale,
E AmountSold IsOnSales = 1 , could overestimate the average sales volume a busi‐
ness would have had if it made a price cut, E AmountSold do IsOnSales = 1 . In the
first case, you are looking at businesses that chose to cut prices, which are probably
bigger businesses. In contrast, the latter quantity, E AmountSold do IsOnSales = 1 ,
refers to what would’ve happened if you forced every business to engage in sales, not
just the big ones. Importantly, in general,

E AmountSold IsOnSales = 1 ≠ E AmountSold do IsOnSales = 1

One way to think about the difference between the two is in terms of selection and
intervention. When you condition on sales, you are measuring the amount sold on a
selected subsample of business that actually cut prices. When you condition on the
intervention do IsOnSales , you are forcing every business to cut prices and then
measuring the amount sold on the entire sample (see Figure 1-2).

do .  is used to define causal quantities that are not always recoverable from
observed data. In the previous example, you can’t observe do IsOnSales = 1  for every
business, since you didn’t force them to do sales. do .  is most useful as a theoretical

Association and Causation | 11



concept that you can use to explicitly state the causal quantity you are after. Since it is
not directly observable, a lot of causal inference is about eliminating it from theoreti‐
cal expression—a process called identification.

Figure 1-2. Selection filters the sample based on the treatment; intervention forces the
treatment on the entire sample

Individual Treatment Effect
The do .  operator also allows you to express the individual treatment effect, or the
impact of the treatment on the outcome for an individual unit i. You can write it as
the difference between two interventions:

τi = Yi do T = t1 − Yi do T = t0

In words, you would read this as “the effect, τi, of going from treatment t0 to t1 for
unit i is the difference in the outcome of that unit under t1 compared to t0”. You could
use this to reason about our problem of figuring out the effect of flipping IsOnSales
from 0 to 1 in AmountSold:

τi = AmountSoldi do IsOnSales = 1 − AmountSoldi do IsOnSales = 0

Due to the fundamental problem of causal inference, you can only observe one term
of the preceding equation. So, even though you can theoretically express that quan‐
tity, it doesn’t necessarily mean you can recover it from data.

Potential Outcomes
The other thing you can define with the do .  operator is perhaps the coolest and
most widely used concept in causal inference—counterfactual or potential outcomes:

Yti = Yi do Ti = t

You should read this as “unit i’s outcome would be Y if its treatment is set to t.” Some‐
times, I’ll use function notation to define potential outcomes, since subscripts can
quickly become too crowded:

12 | Chapter 1: Introduction to Causal Inference



Yti = Y t i

When talking about a binary treatment (treated or not treated), I’ll denote Y0i as the
potential outcome for unit i without the treatment and Y1i as the potential outcome
for the same unit i with the treatment. I’ll also refer to one potential outcome as fac‐
tual, meaning I can observe it, and the other one as counterfactual, meaning it cannot
be observed. For example, if unit i is treated, I get to see what happens to it under the
treatment; that is, I get to see Y1i, which I’ll call the factual potential outcome. In con‐
trast, I can’t see what would happen if, instead, unit i wasn’t treated. That is, I can’t see
Y0i, since it is counterfactual:

Yi =
Y1i if unit i received the treatment

Y0i otherwise

You might also find the same thing written as follows:

Yi = TiY1i + 1 − Ti Y0i = Y0i + Y1i − Y0i Ti

Back to our example, you can write AmountSold0i to denote the amount business i
would have sold had it not done any price cut and AmountSold1i, the amount it
would have sold had it done sales. You can also define the effect in terms of these
potential outcomes:

τi = Y1i − Y0i

Assumptions

Throughout this book, you’ll see that causal inference is always
accompanied by assumptions. Assumptions are statements you
make when expressing a belief about how the data was generated.
The catch is that they usually can’t be verified with the data; that’s
why you need to assume them. Assumptions are not always easy to
spot, so I’ll do my best to make them transparent.

Consistency and Stable Unit Treatment Values
In the previous equations, there are two hidden assumptions. The first assumption
implies that the potential outcome is consistent with the treatment: Y i t = Y when
Ti = t. In other words, there are no hidden multiple versions of the treatment beyond
the ones specified with T. This assumption can be violated if the treatment comes in
multiple dosages, but you are only accounting for two of them; for example, if you

Association and Causation | 13



care about the effect of discount coupons on sales and you treat it as being binary—
customers received a coupon or not—but in reality you tried multiple discount val‐
ues. Inconsistency can also happen when the treatment is ill defined. Imagine, for
example, trying to figure out the effect of receiving help from a financial planner in
one’s finances. What does “help” mean here? Is it a one-time consultation? Is it regu‐
lar advice and goal tracking? Bundling up all those flavors of financial advice into a
single category also violates the consistency assumption.

A second assumption that is implied is that of no interference, or stable unit of treat‐
ment value (SUTVA). That is, the effect of one unit is not influenced by the treatment
of other units: Y i Ti = Y i T1, T2, . . . , Ti, . . . , Tn . This assumption can be violated
if there are spillovers or network effects. For example, if you want to know the effect
of vaccines on preventing a contagious illness, vaccinating one person will make
other people close to her less likely to catch this illness, even if they themselves did
not get the treatment. Violations of this assumption usually cause us to think that the
effect is lower than it is. With spillover, control units get some treatment effect, which
in turn causes treatment and control to differ less sharply than if there was no
interference.

Violations

Fortunately, you can often deal with violations on both assump‐
tions. To fix violations of consistency, you have to include all ver‐
sions of the treatment in your analysis. To deal with spillovers, you
can expand the definition of a treatment effect to include the effect
that comes from other units and use more flexible models to esti‐
mate those effects.

Causal Quantities of Interest
Once you’ve learned the concept of a potential outcome, you can restate the funda‐
mental problem of causal inference: you can never know the individual treatment effect
because you only observe one of the potential outcomes. But not all is lost. With all
these new concepts, you are ready to make some progress in working around this
fundamental problem. Even though you can never know the individual effects, τi,
there are other interesting causal quantities that you can learn from data. For
instance, let’s define average treatment effect (ATE) as follows:

ATE = E τi ,

or

ATE = E Y1i − Y0i ,

14 | Chapter 1: Introduction to Causal Inference



or even

ATE = E Y do T = 1 − E Y do T = 0 ,

The average treatment effect represents the impact the treatment T would have
on average. Some units will be more impacted by it, some less, and you can never
know the individual impact on a unit. Additionally, if you wanted to estimate the ATE
from data, you could replace the expectation with sample averages:

1
N ∑i = 0

N τi

or

1
N ∑i = 0

N Y1i − Y0i

Of course, in reality, due to the fundamental problem of causal inference, you can’t
actually do that, as only one of the potential outcomes will be observed for each unit.
For now, don’t worry too much about how you would go about estimating that quan‐
tity. You’ll learn it soon enough. Just focus on understanding how to define this causal
quantity in terms of potential outcomes and why you want to estimate them.

Another group effect of interest is the average treatment effect on the treated (ATT):

ATT = E Y1i − Y0i T = 1

This is the impact of the treatment on the units that got the treatment. For example, if
you did an offline marketing campaign in a city and you want to know how many
extra customers this campaign brought you in that city, this would be the ATT: the
effect of marketing on the city where the campaign was implemented. Here, it’s
important to notice how both potential outcomes are defined for the same treatment.
In the case of the ATT, since you are conditioning on the treated, Y0i is always
unobserved, but nonetheless well defined.

Finally, you have conditional average treatment effects (CATE),

CATE = E Y1i − Y0i X = x ,

which is the effect in a group defined by the variables X. For example, you might
want to know the effect of an email on customers that are older than 45 years and on
those that are younger than that. Conditional average treatment effect is invaluable

Association and Causation | 15



for personalization, since it allows you to know which type of unit responds better to
an intervention.

You can also define the previous quantities when the treatment is continuous. In this
case, you replace the difference with a partial derivative:

∂
∂t E Yi

This might seem fancy, but it’s just a way to say how much you expect E Y i  to change
given a small increase in the treatment.

Causal Quantities: An Example
Let’s see how you can define these quantities in our business problem. First, notice
that you can never know the effect price cuts (having sales) have on an individual
business, as that would require you to see both potential outcomes, AmountSold0i
and AmountSold1i, at the same time. But you could instead focus your attention on
something that is possible to estimate, like the average impact of price cuts on
amount sold:

ATE = E AmountSold1i − AmountSold0i ,

how the business that engaged in price cuts increased its sales:

ATT = E AmountSold1i − AmountSold0i IsOnSales = 1 ,

or the impact of having sales during the week of Christmas:

CATE = E AmountSold1i − AmountSold0i weeksToXmas = 0

Now, I know you can’t see both potential outcomes, but just for the sake of argument
and to make things a lot more tangible, let’s suppose you could. Pretend for a
moment that the causal inference deity is pleased with the many statistical battles you
fought and has rewarded you with godlike powers to see the potential alternative uni‐
verses, one where each outcome is realized. With that power, say you collect data on
six businesses, three of which were having sales and three of which weren’t.

In the following table i is the unit identifier, y is the observed outcome, y0 and y1 are
the potential outcomes under the control and treatment, respectively, t is the treat‐
ment indicator, and x is the covariate that marks time until Christmas. Remember
that being on sale is the treatment and amount sold is the outcome. Let’s also say that,

16 | Chapter 1: Introduction to Causal Inference



for two of these businesses, you gathered data one week prior to Christmas, which is
denoted by x = 1, while the other observations are from the same week as Christmas:

i y0 y1 t x y te
0 1 200 220 0 0 200 20
1 2 120 140 0 0 120 20
2 3 300 400 0 1 300 100
3 4 450 500 1 0 500 50
4 5 600 600 1 0 600 0
5 6 600 800 1 1 800 200

With your godly powers, you can see both AmountSold0 and AmountSold1. This
makes calculating all the causal quantities we’ve discussed earlier incredibly easy. For
instance, the ATE here would be the mean of the last column, that is, of the treatment
effect:

ATE = 20 + 20 + 100 + 50 + 0 + 200 /6 = 65

This would mean that sales increase the amount sold, on average, by 65 units. As for
the ATT, it would just be the mean of the last column when T = 1:

ATT = 50 + 0 + 200 /3 = 83.33

In other words, for the business that chose to cut prices (where treated), lowered pri‐
ces increased the amount sold, on average, by 83.33 units. Finally, the average effect
conditioned on being one week prior to Christmas (x = 1) is simply the average of the
effect for units 3 and 6:

CATE x = 1 = 100 + 200 /2 = 150

And the average effect on Christmas week is the average treatment effect when x = 0:

CATE x = 0 = 20 + 20 + 50 + 0 /4 = 22.5

meaning that business benefited from price cuts much more one week prior to
Christmas (150 units), compared to price cuts in the same week as Christmas
(increase of 22.5 units). Hence, stores that cut prices earlier benefited more from it
than those that did it later.

Now that you have a better understanding about the causal quantities you are usually
interested in (ATE, ATT, and CATE), it’s time to leave Fantasy Island and head back
to the real world. Here things are brutal and the data you actually have is much

Association and Causation | 17



harder to work with. Here, you can only see one potential outcome, which hides the
individual treatment effect:

i y0 y1 t x y te
0 1 200.0 NaN 0 0 200 NaN
1 2 120.0 NaN 0 0 120 NaN
2 3 300.0 NaN 0 1 300 NaN
3 4 NaN 500.0 1 0 500 NaN
4 5 NaN 600.0 1 0 600 NaN
5 6 NaN 800.0 1 1 800 NaN

Missing Data Problem

One way to see causal inference is as a missing data problem. To
infer the causal quantities of interest, you must impute the missing
potential outcomes.

You might look at this and ponder “This is certainly not ideal, but can’t I just take the
mean of the treated and compare it to the mean of the untreated? In other words,
can’t I just do ATE = 500 + 600 + 800 /3 − 200 + 120 + 300 /3 = 426.67?” No!
You’ve just committed the gravest sin of mistaking association for causation!

Notice how different the results are. The ATE you calculated earlier was less than 100
and now you are saying it is something above 400. The issue here is that the busi‐
nesses that engaged in sales are different from those that didn’t. In fact, those that did
would probably have sold more regardless of price cut. To see this, just go back to
when you could see both potential outcomes. Then, Y0 for the treated units are much
higher than that of the untreated units. This difference in Y0 between treated groups
makes it much harder to uncover the treatment effect by simply comparing both
groups.

Although comparing means is not the smartest of ideas, I think that your intuition is
in the right place. It’s time to apply the new concepts that you’ve just learned to refine
this intuition and finally understand why association is not causation. It’s time to face
the main enemy of causal inference.

Bias
To get right to the point, bias is what makes association different from causation. The
fact that what you estimate from data doesn’t match the causal quantities you want to
recover is the whole issue. Fortunately, this can easily be understood with some intu‐
ition. Let’s recap our business example. When confronted with the claim that cutting
prices increases the amount sold by a business, you can question it by saying that

18 | Chapter 1: Introduction to Causal Inference



those businesses that did sales would probably have sold more anyway, even with no
price cuts. Maybe this is because they are bigger and can afford to do more aggressive
sales. In other words, it is the case that treated businesses (businesses having sales) are
not comparable with untreated businesses (not having sales).

To give a more formal argument, you can translate this intuition using potential out‐
come notation. First, to estimate the ATE, you need to estimate what would have hap‐
pened to the treated had they not been treated, E Y0 T = 1 , and what would have
happened to the untreated, had they been treated, E Y1 T = 0 . When you compare
the average outcome between treated and untreated, you are essentially using
E Y T = 0  to estimate E Y0  and E Y T = 1  to estimate E Y1 . In other words, you
are estimating the E Y T = t  hoping to recover E Yt . If they don’t match, an estima‐
tor that recovers E Y T = t , like the average outcome for those that got treatment t,
will be a biased estimator of E Yt .

Technical Definition

You can say that an estimator is biased if it differs from the parame‐
ter it is trying to estimate. Bias = E β − β , where β is the estimate
and β the thing it is trying to estimate—the estimand. For example,
an estimator for the average treatment effect is biased if it’s system‐
atically under- or overestimating the true ATE.

Back to intuition, you can even leverage your understanding of how the world works
to go even further. You can say that, probably, Y0 of the treated business is bigger than
Y0 of the untreated business. That is because businesses that can afford to engage in
price cuts tend to sell more regardless of those cuts. Let this sink in for a moment. It
takes some time to get used to talking about potential outcomes, as it involves reason‐
ing about things that would have happened but didn’t. Read this paragraph over again
and make sure you understand it.

The Bias Equation
Now that you understand why a sample average may differ from the average potential
outcome it seeks to estimate, let’s take a closer look at why differences in averages
generally do not recover the ATE. This section may be a bit technical, so feel free to
skip to the next one if you’re not a fan of math equations.

In the sales example, the association between the treatment and the outcome is meas‐
ured by E Y T = 1 − E Y T = 0 . This is the average amount sold for the business
having sales minus the average amount sold for those that are not having sales. On
the other hand, causation is measured by E Y1 − Y0  (which is shorthand for
E Y do t = 1 − E Y do t = 0 ).

Bias | 19



To understand why and how they differ, let’s replace the observed outcomes with the
potential outcomes in the association measure E Y T = 1 − E Y T = 0 . For the
treated, the observed outcome is Y1, and for the untreated, it is Y0:

E Y T = 1 − E Y T = 0 = E Y1 T = 1 − E Y0 T = 0

Now let’s add and subtract E Y0 T = 1 , which is a counterfactual outcome that tells
us what would have happened to the outcome of the treated had they not received the
treatment:

E Y T = 1 − E Y T = 0 = E Y1 T = 1 − E Y0 T = 0 + E Y0 T = 1 − E Y0 T = 1

Finally, you can reorder the terms and merge some expectations:

E Y T = 1 − E Y T = 0 = E Y1 − Y0 T = 1
ATT

+ E Y0 T = 1 − E Y0 T = 0
BIAS

This simple piece of math encompasses all the problems you’ll encounter in causal
questions. To better understand it, let’s break it down into some of its implications.
First, this equation tells us why association is not causation. As you can see, associa‐
tion is equal to the treatment effect on the treated plus a bias term. The bias is given by
how the treated and control group differ regardless of the treatment, which is expressed
by the difference in Y0. You can now explain why you may be suspicious when some‐
one tells us that price cuts boost the amount sold by such a high number. In this sales
example, you believe that E Y0 T = 0 < E Y0 T = 1 , meaning that businesses that
can afford to do price cuts tend to sell more, regardless of whether or not they are
having a sale.

Why does this happen? That’s an issue for Chapter 3, where you’ll examine confound‐
ing. For now, you can think of bias arising because many things you can’t observe are
changing together with the treatment. As a result, the treated and untreated busi‐
nesses differ in more ways than just whether or not they are having a sale. They also
differ in size, location, the week they choose to have a sale, management style, the cit‐
ies they are located in, and many other factors. To determine how much price cuts
increase the amount sold, you would need businesses with and without sales to be, on
average, similar to each other. In other words, treated and control units would have to
be exchangeable.

20 | Chapter 1: Introduction to Causal Inference



PRACTICAL EXAMPLE

A Glass of Wine a Day Keeps the Doctor Away
A popular belief is that wine, in moderation, is good for your health. The argument is
that Mediterranean cultures, like Italian and Spanish, are famous for drinking a glass
of wine every day and also display high longevity.

You should be suspicious about this claim. To attribute the extended lifespan to wine,
those who drink and those who don’t would need to be exchangeable, and we know
they are not. For instance, Italy and Spain both have generous healthcare systems and
comparatively elevated Human Development Indexes. In technical terms,
E Lifespan0 WineDrinking = 1 > E Lifespan0 WineDrinking = 0 , so bias might be
clouding the true causal effect.

A Visual Guide to Bias
You don’t have to only use math and intuition to talk about exchangeability. In our
example, you can even check that they are not exchangeable by plotting the relation‐
ship in outcome by variables for the different treatment groups. If you plot the out‐
come (weekly_amount_sold) by business size, as measured by avg_week_sales, and
color each plot by the treatment, is_on_sale, you can see that the treated—business
having sales—are more concentrated to the right of the plot, meaning that they are
usually bigger businesses. That is, treated and untreated are not balanced.

This is very strong evidence that your hypothesis E Y0 T = 1 > E Y0 T = 0  was
correct. There is an upward bias, as both the number of businesses with price cuts
(T = 1) and the outcome of those businesses, had they not done any sale (Y0 for those
businesses), would go up with business size.

If you’ve ever heard about Simpson’s Paradox, this bias is like a less extreme version of
it. In Simpson’s Paradox, the relationship between two variables is initially positive,
but, once you adjust for a third variable, it becomes negative. In our case, bias is not

Bias | 21



so extreme as to flip the sign of the association (see Figure 1-3). Here, you start with a
situation where the association between price cuts and amount sold is too high and
controlling for a third variable reduces the size of that association. If you zoom in
inside businesses of the same size, the relationship between price cuts and amount
sold decreases, but remains positive.

Figure 1-3. How bias relates to Simpson’s Paradox

Once again, this is so important that I think it is worth going over it again, now with
some images. They are not realistic, but they do a good job of explaining the issue
with bias. Let’s suppose you have a variable indicating the size of the business. If you
plot the amount sold against size, you’ll see an increasing trend, where the bigger the
size, the more the business sells. Next, you color the dots according to the treatment:
white dots are businesses that cut their prices and black dots are businesses that didn’t
do that. If you simply compare the average amount sold between treated and untrea‐
ted business, this is what you’ll get:

Notice how the difference in amount sold between the two groups can (and probably
does) have two causes:

1. The treatment effect. The increase in the amount sold, which is caused by the
price cut.

22 | Chapter 1: Introduction to Causal Inference



2. The business size. Bigger businesses are able both to sell more and do more price
cuts. This source of difference between the treated and untreated is not due to the
price cut.

The challenge in causal inference is untangling both causes.

Contrast this with what you would see if you add both potential outcomes to the pic‐
ture (counterfactual outcomes are denoted as triangles). The individual treatment
effect is the difference between the unit’s outcome and another theoretical outcome
that the same unit would have if it got the alternative treatment. The average treat‐
ment effect you would like to estimate is the average difference between the potential
outcomes for each individual unit, Y1 − Y0. These individual differences are much
smaller than the difference you saw in the previous plot, between treated and untrea‐
ted groups. The reason for this is bias, which is depicted in the right plot:

You can represent the bias by setting everyone to not receive the treatment. In this
case, you are only left with the Y0 potential outcome. Then, you can see how the
treated and untreated groups differ on those potential outcomes under no treatment.
If they do, something other than the treatment is causing the treated and untreated to
be different. This is precisely the bias I’ve been talking about. It is what shadows the
true treatment effect.

Identifying the Treatment Effect
Now that you understand the problem, it’s time to look at the (or at least one) solu‐
tion. Identification is the first step in any causal inference analysis. You’ll see much
more of it in Chapter 3, but for now, it’s worth knowing what it is. Remember that
you can’t observe the causal quantities, since only one potential outcome is observa‐
ble. You can’t directly estimate something like E Y1 − Y0 , since you can’t observe this
difference for any data point. But perhaps you can find some other quantity, which is
observable, and can be used to recover the causal quantity you care about. This is the
process of identification: figuring out how to recover causal quantities from observable
data. For instance, if, by some sort of miracle, E Y T = t  managed to recover

Identifying the Treatment Effect | 23



E Yt  (identify E Yt ), you would be able to get E Y1 − Y0  by simply estimating
E Y T = 1 − E Y T = 0 . This can be done by estimating the average outcome for
the treated and untreated, which are both observed quantities.

See Also

In the past decade (2010–2020), an entire body of knowledge on
causal identification was popularized by Judea Pearl and his team,
as an attempt to unify the causal inference language. I use some of
that language in this chapter—although probably an heretical ver‐
sion of it—and I’ll cover more about it in Chapter 3. If you want to
learn more about it, a short yet really cool paper to check out is
“Causal Inference and Data Fusion in Econometrics,” by Paul
Hünermund and Elias Bareinboim.

You can also see identification as the process of getting rid of bias. Using potential
outcomes, you can also say what would be necessary to make association equal to
causation. If E Y0 T = 0 = E Y0 T = 1 , then, association IS CAUSATION! Under‐
standing this is not just remembering the equation. There is a strong intuitive argu‐
ment here. To say that E Y0 T = 0 = E Y0 T = 1  is to say that treatment and
control group are comparable regardless of the treatment. Mathematically, the bias
term would vanish, leaving only the effect on the treated:

E Y T = 1 − E Y T = 0 = E Y1 − Y0 T = 1 = ATT

Also, if the treated and the untreated respond similarly to the treatment, that is,
E Y1 − Y0 T = 1 = E Y1 − Y0 T = 0 , then (pay close attention), difference in means
BECOMES the average causal effect:

E Y T = 1 − E Y T = 0 = ATT = ATE = E Y1 − Y0

Despite the seemingly fancy-schmancy math here, all it’s saying is that once you make
treated and control group interchangeable, expressing the causal effect in terms of
observable quantities in the data becomes trivial. Applying this to our example, if
businesses that do and don’t cut prices are similar to each other—that is, exchangea‐
ble—then, the difference in amount sold between the ones having sales and those not
having sales can be entirely attributed to the price cut.

24 | Chapter 1: Introduction to Causal Inference



The Independence Assumption
This exchangeability is the key assumption in causal inference. Since it’s so important,
different scientists found different ways to state it. I’ll start with one way, probably the
most common, which is the independence assumption. Here, I’ll say that the potential
outcomes are independent of the treatment: Y0, Y1 ⊥ T.

This independence means that E Y0 T = E Y0 , or, in other words, that the treat‐
ment gives you no information about the potential outcomes. The fact that a unit was
treated doesn’t mean it would have a lower or higher outcome, had it not been treated
(Y0). This is just another way of saying that E Y0 T = 1 = E Y0 T = 0 . In our busi‐
ness example, it simply means that you wouldn’t be able to tell apart the businesses
that chose to engage in sales from those that didn’t, had they all not done any sales.
Except for the treatment and its effect on the outcome, they would be similar to each
other. Similarly, E Y1 T = E Y1  means that you also wouldn’t be able to tell them
apart, had they all engaged in sales. Simply put, it means that treated and untreated
groups are comparable and indistinguishable, regardless of whether they all received
the treatment or not.

Identification with Randomization
Here, you are treating independence as an assumption. That is, you know you need to
make associations equal to causation, but you have yet to learn how to make this con‐
dition hold. Recall that a causal inference problem is often broken down into two
steps:

1. Identification, where you figure out how to express the causal quantity of interest
in terms of observable data.

2. Estimation, where you actually use data to estimate the causal quantity identified
earlier.

To illustrate this process with a very simple example, let’s suppose that you can ran‐
domize the treatment. I know I said earlier that in the online marketplace you work
for, businesses had full autonomy on setting prices, but you can still find a way to ran‐
domize the treatment IsOnSales. For instance, let’s say that you negotiate with the
businesses the right to force them to cut prices, but the marketplace will pay for the
price difference you’ve forced. OK, so suppose you now have a way to randomize
sales, so what? This is a huge deal, actually!

Identifying the Treatment Effect | 25



First, randomization ties the treatment assignment to a coin flip, so variations in it
become completely unrelated to any other factors in the causal mechanism:

IsOnSales rand t

AmountSold f y IsOnSales, uy

Under randomization ut vanished from our model since the assignment mechanism
of the treatment became fully known. Moreover, since the treatment is random, it
becomes independent from anything, including the potential outcomes. Randomiza‐
tion pretty much forces independence to hold.

To make this crystal clear, let’s see how randomization pretty much annihilates bias,
starting before the treatment assignment. The first image shows the world of poten‐
tial outcomes (triangles) yet to be realized. This is depicted by the image on the left:

Then, at random, the treatment materializes one or the other potential outcome.

Randomized Versus Observational

In causal inference, we use the term randomized to talk about data
where the treatment was randomized or when the assignment
mechanism is fully known and nondeterministic. In contrast to
that, the term observational is used to describe data where you can
see who got what treatment, but you don’t know how that treat‐
ment was assigned.

Next, let’s get rid of the clutter, removing the unrealized potential outcomes (trian‐
gles). Now you can compare the treated to the untreated:

26 | Chapter 1: Introduction to Causal Inference



In this case, the difference in the outcome between treated and untreated is the aver‐
age causal effect. This happens because there is no other source of difference between
them other than the treatment itself. Therefore, all the differences you see must be
attributed to the treatment. Or, simply put, there is no bias. If you set everyone to not
receive the treatment so that you only observe the Y0s, you would find no difference
between the treated and untreated groups:

This is what the herculean task of causal identification is all about. It’s about finding
clever ways of removing bias and making the treated and the untreated comparable so
that all the difference you see can be attributed to the treatment effect. Importantly,
identification is only possible if you know (or are willing to assume) something about the
data-generating process. Usually, how the treatment was distributed or assigned. This is
why I said earlier that data alone cannot answer causal questions. Sure, data is impor‐
tant for estimating the causal effect. But, besides data, you’ll always require a state‐
ment about how the data—specifically, the treatment—came to be. You get that
statement using your expert knowledge or by intervening in the world, influencing
the treatment and observing how the outcome changes in response.

Identifying the Treatment Effect | 27



PRACTICAL EXAMPLE

An Incredible Membership Program
A big online retailer implemented a membership program, where members pay an
extra fee to have access to more discounts, faster deliveries, return fee waiver, and
amazing customer service. To understand the impact of the program, the company
rolled it out to a random sample of the customers, which could opt in for paying the
fee to get the membership benefits. After a while, they saw that customers in the
membership program were much more profitable than those in the control group.
Customers not only bought from the company, but they also spent less time with cus‐
tomer service. Should we then say that the membership program was a huge success
in increasing sales and decreasing time spent serving customers?

Not really. Although the eligibility to the program was randomized, the random
chunk that could opt in still self-selected into the program. In other words, randomi‐
zation of program eligibility ensures that people who were able to get the program are
comparable to those that weren’t. But, out of the eligible, only a fraction choose to
participate. This choice was not random. Probably, only the more engaged customers
chose to participate, while the casual ones dropped out. So, even though eligibility to
the program was randomized, participation in the program was not. The result is that
those that participated are not comparable to those that didn’t.

If you think about it, out of the eligible customers, the ones that actually chose to par‐
ticipate probably opted in for the program precisely because they already spent a lot
in the online company, which made the extra discounts something worth paying for.
This would imply that E Revenues0 OptIn = 1 > E Revenues0 OptIn = 0 , meaning
those customers that opted in probably generated more revenues regardless of the
program.

Ultimately, causal inference is about figuring out how the world works, stripped of all
delusions and misinterpretations. And now that you understand this, you can move
forward to mastering some of the most powerful methods to remove bias, the instru‐
ments of the brave and true, to identify the causal effect.

Key Ideas
You’ve learned the mathematical language that we’ll use to talk about causal inference
in the rest of this book. Importantly, you’ve learned the definition of potential out‐
come as the outcome you would observe for a unit had that unit taken a specific
treatment T = t:

Yti = Yi do Ti = t

28 | Chapter 1: Introduction to Causal Inference



Potential outcomes were very useful in understanding why association is different
from causation. Namely, when treated and untreated are different due to reasons
other than the treatment, E Y0 T = 1 ≠ E Y0 T = 0 , and the comparison between
both groups will not yield the true causal effect, but a biased estimate. We also used
potential outcomes to see what we would need to make association equal to
causation:

Y0, Y1 ⊥ T

When treated and control groups are interchangeable or comparable, like when we
randomize the treatment, a simple comparison between the outcome of the treated
and untreated groups will yield the treatment effect:

E Y1 − Y0 = E Y T = 1 − E Y T = 0

You also started to understand some of the key assumptions that you need to make
when doing causal inference. For instance, in order to not have any bias when esti‐
mating the treatment effect, you assumed independence between the treatment
assignment and the potential outcomes, T ⊥ Yt.

You’ve also assumed that the treatment of one unit does not influence the outcome of
another unit (SUTVA) and that all the versions of the treatment were accounted for
(if Y i t = Y, then Ti = t), when you defined the outcome Y as a switch function
between the potential outcomes:

Yi = 1 − Ti Y0i + TiY1i

In general, it is always good to keep in mind that causal inference always requires
assumptions. You need assumptions to go from the causal quantity you wish to know
to the statistical estimator that can recover that quantity for you.

Key Ideas | 29





CHAPTER 2

Randomized Experiments and Stats Review

Now that you know the basics about causality, its time to talk about the inference part
in causal inference. This chapter will first recap some concepts from the previous
chapter in the context of randomized experiments. Randomized experiments are the
gold standard for causal inference, so it is really important that you understand what
makes them special. Even when randomization is not an option, having it as an ideal
to strive for will be immensely helpful when thinking about causality.

Next, I’ll use randomized experiments to review some important statistical concepts
and tools, such as error, confidence interval, hypothesis tests, power, and sample size
calculations. If you know about all of this, I’ll make it clear when the review will start
so you can skip it.

Brute-Force Independence with Randomization
In the previous chapter, you saw why and how association is different from causation.
You also saw what is required to make association equal to causation:

E Y T = 1 − E Y T = 0 = E Y1 − Y0 T = 1
ATT

+ E Y0 T = 1 − E Y0 T = 0
BIAS

To recap, association can be described as the sum of two components: the average
treatment effect on the treated and the bias. The measured association is only fully
attributed to causation if the bias component is zero. There will be no bias if
E Yt T = 0 = E Yt T = 1 . In other words, association will be causation if the
treated and control are equal or comparable, except for their treatment. Or, in slightly
more technical terms, when the potential outcomes of the treated are equal to the

31



potential outcomes of the untreated, at least in expectations. Remember that potential
outcome Yti is the outcome you would see had unit i received treatment t.

In Chapter 1, I also briefly touched on how to equate association and causation in the
case that the potential outcomes are independent from the treatment:

Y0, Y1 ⊥ T .

Importantly, I’m not talking about the independence between the treatment and the
outcome. If that were the case, the treatment would have no impact on the outcome
for you to measure. For example, let’s say that the treatment is a new feature in your
company’s app and the outcome is time spent in that app. Saying that
Feature ⊥ TimeSpent means that time spent in the app is the same in both treated
and untreated groups. In other words, the new feature has simply no effect.

Instead, what you want is for the potential outcomes to be independent of the treat‐
ment. There is an important distinction here. Saying that Y1 ⊥ T means that the out‐
come that would have been observed had the subjects received the treatment is
independent of whether they actually received it or not. Analogously, Y0 ⊥ T indi‐
cates that the outcome that would have been observed if the subjects were untreated
does not depend on the actual treatment assignment. In summary, the outcome Y
that was actually observed still depends on the treatments actually assigned.

Another simpler way of putting this is that the independence assumption implies that
treatment and control groups are comparable. Or that knowing the treatment assign‐
ment doesn’t give me any information about the baseline potential outcome, Y0. Con‐
sequently, Y0, Y1 ⊥ T means that the treatment is the only thing that causes
difference in outcome between treatment and control:

E Y0 T = 0 = E Y0 T = 1 = E Y0

and

E Y1 T = 0 = E Y1 T = 1 = E Y1

which, as you’ve seen, allows a simple comparison between treated and control aver‐
ages to identify the ATE:

E Y T = 1 − E Y T = 0 = E Y1 − Y0 = ATE

32 | Chapter 2: Randomized Experiments and Stats Review



Although independence is nothing more than an assumption, you can make it a lot
more plausible if you randomize the treatment T. By doing so, you are tying the treat‐
ment assignment to the flip of a coin; that is, a random mechanism completely
known to us. This coin doesn’t have to be fair. You could assign the treatment to just
10% of the subjects, 1%, or even less. As long as the assignment mechanism is ran‐
dom, you can get the right conditions to identify the treatment effect.

By randomizing the treatment, you ensure that the treated and control group are
roughly (in expectation) comparable. The only systematic difference between them is
the treatment itself, which allows you to attribute any difference in the outcome to
that treatment. Essentially, randomization brute-forces your way toward independ‐
ence between the treatment and the potential outcomes.

Let’s now take all this math and go over an example so you can see that it is actually
quite simple. In the following section, I’ll use randomized control trials (RCT) in
order to understand the impact of cross-sell emails.

An A/B Testing Example
A common strategy among companies is to have a cheap or even free product that
isn’t profitable, but serves as the doorway to attracting new customers. Once the com‐
pany has those customers, it can then cross-sell other products that are more profita‐
ble. Let’s suppose you work for a coffee delivery company. Your main product is a
low-cost monthly subscription that allows the customers to have high-quality and
curated coffee delivered to them weekly. Beyond this basic and low-cost subscription,
your company provides a more premium one, with brewing perks and the world’s
finest coffee, like that from local producers in the small town of Divinolandia, Brazil.
This is by far your most profitable service, and therefore your goal is to increase its
sales to the users who have already subscribed for your low-cost, entry product. For
that, your company has a marketing team that tries to sell the premium coffee deliv‐
ery subscription to its customers. They do this mainly through cross-sell emails. As
the causal inference expert, your goal is to understand how effective those emails are.

When you look into the existing data (nonrandomized) to answer this question, you
can clearly see that customers who received an email were more likely to buy the pre‐
mium subscription. In technical terms, when a customer buys the product you are
trying to sell, you can say they converted. So, you can say that the customers who
received an email converted more:

E Conversion Email = 1 > E Conversion Email = 0

An A/B Testing Example | 33



Unfortunately, you also discover that the marketing team tends to send emails for the
customers who they thought were more likely to convert in the first place. It is not
entirely clear how they did this. Maybe they looked for customers who interacted the
most with the company, or those who answered positively in a satisfaction survey.
Regardless, this is very strong evidence that

E Conversion0 Email = 1 > E Conversion0 Email = 0 .

In other words, customers who were actually sent the email would convert in greater
numbers than other customers, even if no email was sent at all. As a result, a simple
comparison in means is a biased estimator of the true causal effect of the cross-sell
email. To solve that, you need to make the treated and untreated comparable:
E Y0 T = 1 = E Y0 T = 0 , which can be done by randomly assigning the emails. If
you manage to do that, the treated and untreated will have, on average, the same con‐
version, except for the treatment they receive. So, suppose you did just that. You
selected three random samples from your customer base. To one of them, you didn’t
send any emails. To the other, you sent a large and beautifully written email about the
premium subscription. To the last sample, you sent a short and to-the-point email
about the premium subscription. After some time collecting data, you have some‐
thing that looks like this:

In [1]: import pandas as pd # for data manipulation
        import numpy as np # for numerical computation

        data = pd.read_csv("./data/cross_sell_email.csv")
        data
        

gender cross_sell_email age conversion
0 0 short 15 0
1 1 short 27 0
... ... ... ... ...
321 1 no_email 16 0
322 1 long 24 1

323 rows × 4 columns

You can see that you have 323 observations. It’s not exactly big data, but something
you can work with.

34 | Chapter 2: Randomized Experiments and Stats Review



Simulated Versus Real-World Data

When teaching about causal inference, it is very helpful to use
simulated data. First, because causal inference is always accompa‐
nied by a statement about how the data was generated. Simulation
allows me to talk about this assignment mechanism without any
uncertainty. Second, causal inference involves counterfactual quan‐
tities that I can choose to show in order to give a better explanation
of what is going on. However, so that the data doesn’t look too arti‐
ficial, I often take real-world data and transform it to fit the exam‐
ple I’m trying to give. For instance, this example takes data from
the paper “A Randomized Assessment of Online Learning” (2016),
by William T. Alpert et al., and transforms it to look like cross-sell
email data.

To estimate the causal effect, you can simply compute the average conversion for each
of the treatment groups:

In [2]: (data
         .groupby(["cross_sell_email"])
         .mean())
        

gender age conversion

cross_sell_email
long 0.550459 21.752294 0.055046
no_email 0.542553 20.489362 0.042553
short 0.633333 20.991667 0.125000

Yup. It’s really that simple. You can see that the group assigned to no email had a con‐
version rate of 4.2%, while the groups assigned to the long and short email had a con‐
version rate of 5.5% and a whopping 12.5%, respectively. Therefore, the ATEs,
measured as the difference between each treated group and the control group,
ATE = E Y T = t − E Y T = 0 , where 1.3 and 8.3 percentage points increase for
the long and short email, respectively. Interestingly, sending an email that is short and
to the point seems better than an elaborated one.

The beauty of RCTs is that you no longer have to worry if the marketing team some‐
how targeted customers who were likely to convert or, for that matter, you don’t have
to worry that the customers from the distinct treatment groups are different in any
systematic way, other than the treatment they received. By design, the random experi‐
ment is made to wipe out those differences, making Y0, Y1 ⊥ T, at least in theory.

In practice, a good sanity check to see if the randomization was done right (or if you
are looking at the correct data) is to check if the treated are equal to the untreated in

An A/B Testing Example | 35



pretreatment variables. For example, you have data on gender and age and you can
see whether these two characteristics are balanced across treatment groups.

When you look at age, treatment groups seem very much alike, but there seems to be
a difference in gender (woman = 1, man = 0). It seems that the group that received
the short email had 63% men, compared to 54% in the control group and 55% in the
group that got the long email. This is somewhat unsettling, as the treatment group in
which you found the highest impact also appears to be different from the other
groups. So, even if independence should hold in theory in RCTs, it does not necessar‐
ily hold in practice. It could be that the large effect you saw for the short email was
due to the fact that, for whatever reason, E Y0 man > E Y0 woman .

There isn’t a clear consensus on how to evaluate balance, but one very simple sugges‐
tion is to check the normalized differences between the treatment groups:

μtr − μco

σ tr
2 + σco

2 /2
,

where μ, σ2 are the sample mean and variance, respectively. Since there are three
treatment groups in your example, you can just compute this difference with respect
to the control group:

In [3]: X = ["gender", "age"]

        mu = data.groupby("cross_sell_email")[X].mean()
        var = data.groupby("cross_sell_email")[X].var()

        norm_diff = ((mu - mu.loc["no_email"])/
                     np.sqrt((var + var.loc["no_email"])/2))

        norm_diff
        

gender age

cross_sell_email
long 0.015802 0.221423
no_email 0.000000 0.000000
short 0.184341 0.087370

If this difference is too small or too large, you should be worried. Unfortunately, there
isn’t a clear threshold for how much difference is too much, but 0.5 seems to be a
good rule of thumb. In this example, you don’t have any difference that is that high,
but it does seem that the group that got the short email has a large difference in gen‐
der, while the group that got the long email has a large difference in age.

36 | Chapter 2: Randomized Experiments and Stats Review



See Also

For a more in-depth discussion of this topic, check out section 14.2
of the book Causal Inference for Statistics, Social, and Biomedical
Sciences: An Introduction, by Guido W. Imbens and Donald B.
Rubin (Cambridge University Press).

If the preceding formula seems a bit magic right now, don’t worry. It will become
clearer once you go over the statistical review part of this chapter. For now, I just want
to draw your attention to what happens with a small dataset. Even under randomiza‐
tion, it could be that, by chance, one group is different from another. In large sam‐
ples, this difference tends to disappear. It also brings forth the issue of how much
difference is enough for you to conclude that the treatments are indeed effective and
not just due to chance, which is something I’ll address shortly.

The Ideal Experiment
Randomized experiments or randomized controlled trials are the most reliable way to
get causal effects. It’s a straightforward technique and absurdly convincing. It is so
powerful that most countries have it as a requirement for showing the effectiveness of
new drugs. Think of it this way: if you could, RCT would be all you would ever do to
uncover causality. A well-designed RCT is the dream of any scientist and decision
maker.

Unfortunately, they tend to be either very expensive—both in money, but more
importantly, in time—or just plain unethical. Sometimes, you simply can’t control the
assignment mechanism. Imagine yourself as a physician trying to estimate the effect
of smoking during pregnancy on baby weight at birth. You can’t simply force a ran‐
dom portion of moms to smoke during pregnancy. Or say you work for a big bank,
and you need to estimate the impact of the credit line on customer churn. It would be
too expensive to give random credit lines to your customers. Or say you want to
understand the impact of increasing the minimum wage on unemployment. You can’t
simply assign countries to have one or another minimum wage. Moreover, as you will
see in Chapter 3, there are some situations (selection biased ones) where not even
RCTs can save you.

Still, I would like you to think about random experiments beyond a tool for uncover‐
ing causal effects. Rather, the goal here is to use it as a benchmark. Whenever you do
causal inference without RCTs, you should always ask yourself what would be the
perfect experiment to answer your question. Even if that ideal experiment is not feasi‐
ble, it serves as a valuable benchmark. It often sheds some light on how you can dis‐
cover the causal effect even without such an experiment.

The Ideal Experiment | 37



The Most Dangerous Equation
Now that you understand the value of an experiment, it’s time to review what it
means to not have infinite data. Causal inference is a two-step process. RCTs are
invaluable in helping with identification, but if the sample size of an experiment is
small, you’ll struggle with the second step: inference. To understand this, it’s worth
reviewing some statistical concepts and tools. If you are already familiar with them,
feel free to skip to the next chapter.

In his famous article of 2007, Howard Wainer writes about very dangerous equations:

“Some equations are dangerous if you know them, and others are dangerous if you do
not. The first category may pose danger because the secrets within its bounds open
doors behind which lies terrible peril. The obvious winner in this is Einstein’s iconic
equation E = MC2, for it provides a measure of the enormous energy hidden within
ordinary matter. […] Instead I am interested in equations that unleash their danger
not when we know about them, but rather when we do not. Kept close at hand, these
equations allow us to understand things clearly, but their absence leaves us danger‐
ously ignorant.”

The equation he talks about is Moivre’s equation:

SE = σ
n

where SE is the standard error of the mean, σ is the standard deviation, and n is the
sample size. This math is definitely something you should master, so let’s get to it.

To see why not knowing this equation is very dangerous, let’s look at some education
data. I’ve compiled data on ENEM scores (Brazilian standardized high school scores,
similar to SATs) from different schools over a three-year period. I’ve also cleaned the
data to keep only the information relevant to you in this section.

If you look at the top-performing school, something catches the eye—those schools
have a reasonably small number of students:

In [4]: df = pd.read_csv("data/enem_scores.csv")
        df.sort_values(by="avg_score", ascending=False).head(10)
        

year school_id number_of_students avg_score
16670 2007 33062633 68 82.97
16796 2007 33065403 172 82.04
... ... ... ... ...
14636 2007 31311723 222 79.41
17318 2007 33087679 210 79.38

38 | Chapter 2: Randomized Experiments and Stats Review



Looking at it from another angle, you can separate only the 1% of top schools and
study them. What are they like? Perhaps you can learn something from the best and
replicate it elsewhere. And sure enough, if you look at the top 1% of schools, you’ll
figure out they have, on average, fewer students:

One natural conclusion is that small schools lead to higher academic performance.
This makes intuitive sense, since we believe that fewer students per teacher allows the
teacher to give focused attention to each student. But what does this have to do with
Moivre’s equation? And why is it dangerous?

Well, it becomes dangerous once people start to make important and expensive deci‐
sions based on this information. In his article, Howard continues:

In the 1990s, it became popular to champion reductions in the size of schools. Numer‐
ous philanthropic organizations and government agencies funded the division of larger
schools because students at small schools are overrepresented in groups with high test
scores.

What people forgot to do was to also look at the bottom 1% of schools: they also have
very few students!

What you see in Figure 2-1 is precisely what’s expected according to Moivre’s equa‐
tion. As the number of students grows, the average score becomes more and more
precise. Schools with very few students (low sample size) can have very high and low
scores simply due to chance. This is less likely to occur in large schools. Moivre’s
equation talks about a fundamental fact regarding the reality of information and
records in the form of data: it is always imprecise. The question then becomes: how
imprecise? And what can you do to take those inaccuracies into account?

The Most Dangerous Equation | 39



Figure 2-1. A typical triangular plot showing how variance decreases with sample size

One way to quantify our uncertainty is the variance of our estimates. Variance tells
you how much observation deviates from its central (expected) value. As Moivre’s
equation indicates, this uncertainty shrinks as the amount of data you observe increa‐
ses. This makes sense, right? If you see many students performing excellently at a
school, you can be more confident that this is indeed a good school. However, if you
see a school with only 10 students and 8 of them perform well, you need to be more
suspicious. By chance, it could be that the school got some above-average students.

The beautiful triangular plot you see in Figure 2-1 tells precisely this story. It shows
you how your estimate of the school performance has a huge variance when the sam‐
ple size is small. It also indicates that variance shrinks as the sample size increases.
This is true for the average score in a school, but it is also true about any summary
statistics you might have, including the ATE you often want to estimate. Back to our
cross-sell email application, if you had thousands of customers in each treatment
group, instead of hundreds, you would be much more confident that the difference in
conversion you saw between treated and control groups are not simply due to chance.

40 | Chapter 2: Randomized Experiments and Stats Review



Random and Systematic Error

Another way to think about this uncertainty in the data is to con‐
trast systematic error with random error. Systematic errors are con‐
sistent biases that affect all measurements in the same way, while
random errors are unpredictable fluctuations in data due to
chance. Systematic error, or bias, doesn’t diminish as you gather
more data, as it pushes all measurements to the same direction,
away from the quantity you want to estimate. In contrast, random
error decreases as the sample size increases, as seen in Moivre’s
equation. Statistics is the science that deals with these imprecisions
due to random error, so they don’t catch you off-guard. It’s a way to
take uncertainty into account.

The Standard Error of Our Estimates
Since this is just a review of statistics, I’ll take the liberty to go a bit faster. If you are
not familiar with distributions, variance, and standard errors, please read on, but
keep in mind that you might need some additional resources. I suggest you google
any MIT course on introduction to statistics. They are usually quite good and you can
watch them for free on YouTube.

In “The Most Dangerous Equation” on page 38, you estimated the average treatment
effect E Y1 − Y0  as the difference in the means between the treated and the untreated
E Y T = 1 − E Y T = 0 . Specifically, you figured out the ATE for two types of
cross-sell emails on conversion. You then saw that the short email had a very impres‐
sive lift, of more than 8 percentage points, while the long email had a smaller impact,
of just 1.3 percentage points increase. But there is still a lingering question: are those
effects large enough so you can be confident they are not due to chance? In technical
terms, do you know if they are statistically significant?

To do so, you first need to estimate the SE, according to the equation I’ve shown ear‐
lier. n is pretty easy to get. You just need the len of each treatment. Or, you can use
pandas groupby followed by a size aggregation:

In [5]: data = pd.read_csv("./data/cross_sell_email.csv")

        short_email = data.query("cross_sell_email=='short'")["conversion"]
        long_email = data.query("cross_sell_email=='long'")["conversion"]
        email = data.query("cross_sell_email!='no_email'")["conversion"]
        no_email = data.query("cross_sell_email=='no_email'")["conversion"]

        data.groupby("cross_sell_email").size()
        

Out[5]: cross_sell_email
        long        109
        no_email     94

The Standard Error of Our Estimates | 41



        short       120
        dtype: int64
        

To get the estimate for the standard deviation, you can apply the following equation:

σ = 1
N − 1 ∑i = 0

N x − x 2

where x is the mean of x. 

Hats

In this book, I’ll use hats to denote the sample estimate of parame‐
ters and predictions.

Fortunately for you, most programming software already implements this. In pandas,
you can use the method std. Putting it all together, you have the following function
for the standard error:

In [6]: def se(y: pd.Series):
            return y.std() / np.sqrt(len(y))

        print("SE for Long Email:", se(long_email))
        print("SE for Short Email:", se(short_email))
        

Out[6]: SE for Long Email: 0.021946024609185506
        SE for Short Email: 0.030316953129541618
        

Knowing this formula is incredibly handy (we’ll come back to it multiple times, trust
me), but know that pandas also has a built-in method for calculating the standard
error, .sem() (as in standard error of the mean):

In [7]: print("SE for Long Email:", long_email.sem())
        print("SE for Short Email:", short_email.sem())
        

Out[7]: SE for Long Email: 0.021946024609185506
        SE for Short Email: 0.030316953129541618
        

Confidence Intervals
The standard error of your estimate is a measure of confidence. You need to go into
turbulent and polemical statistical waters to understand precisely what it means. For
one view of statistics, the frequentist view, we would say that our data is nothing more
than a manifestation of an underlying data-generating process. This process is

42 | Chapter 2: Randomized Experiments and Stats Review

https://oreil.ly/kCUZc


abstract and ideal. It is governed by true parameters that are unchanging but also
unknown to us. In the context of cross-sell email, if you could run multiple experi‐
ments and calculate the conversion rate for each of them, they would fall around the
true underlying conversion rate, even though not being exactly equal to it. This is
very much like Plato’s writing on the Forms:

Each [of the essential forms] manifests itself in a great variety of combinations, with
actions, with material things, and with one another, and each seems to be many.

To understand this, let’s suppose you have the true abstract distribution of conversion
for the short cross-sell email. Because conversion is either zero or one, it follows a
Bernoulli distribution and let’s say that the probability of success in this distribution
is 0.08. That is, whenever a customer receives the short email, it has an 8% chance of
converting. Next, let’s pretend you can run 10,000 experiments. On each one, you col‐
lect a sample of 100 customers, send them the short email and observe the average
conversion, giving you a total of 10,000 conversion rates. The 10,000 conversion rates
from those experiments will be distributed around the true mean of 0.08 (see
Figure 2-2). Some experiments will have a conversion rate lower than the true one,
and some will be higher, but the mean of the 10,000 conversion rate will be pretty
close to the true mean.

List Comprehension
I tend to use a lot of list comprehension instead of for loops whenever I want to apply
a function to every item in a sequence. A list comprehension is just a syntactic sugar
for a mapping for loop:

table_2 = []
for n in range(11):
    table_2.append(n*2)
        
            
table_2 = [n*2 for n in range(11)]

In [8]: n = 100
        conv_rate = 0.08

        def run_experiment(): 
            return np.random.binomial(1, conv_rate, size=n)

        np.random.seed(42)

        experiments = [run_experiment().mean() for _ in range(10000)]
        

Confidence Intervals | 43



Figure 2-2. The distribution of conversion rate (average conversion) of 10,000 experi‐
ments, each with 100 units

This is to say that you can never be sure that the mean of your experiment matches
the true platonic and ideal mean. However, with the standard error, you can create an
interval that will contain the true mean in 95% of the experiments you run.

In real life, you don’t have the luxury of simulating the same experiment with multi‐
ple datasets. You often only have one. But you can draw from the idea of simulating
multiple experiments to construct a confidence interval. Confidence intervals come
with a probability attached to them. The most common one is 95%. This probability
tells you that if you were to run multiple experiments and construct the 95% confi‐
dence interval in each one of them, the true mean would fall inside the interval 95%
of the time.

To calculate the confidence interval, you’ll use what is perhaps the most mind-
blowing result in statistics: the Central Limit Theorem. Take a closer look at the dis‐
tribution of conversion rates you’ve just plotted. Now, remember that conversion is
either zero or one and hence follows a Bernoulli distribution. If you plot this Ber‐
noulli distribution in a histogram, it will have a huge bar at 0 and small bar at 1, since
the success rate is only 8%. This looks nothing like a normal distribution, right?

44 | Chapter 2: Randomized Experiments and Stats Review



This is where that mind-blowing result comes into play. Even though the distribution
of the data is not normally distributed (like in the conversion case, which follows a
Bernoulli distribution), the average of the data is always normally distributed. If you
collect data on conversion multiple times and calculate the average conversion each
time, those averages will follow a normal distribution. This is very neat, because nor‐
mal distribution is well known and you can do all sorts of interesting things with it. 
For example, for the purpose of calculating the confidence interval, you can leverage
knowledge from statistical theory that 95% of the mass of a normal distribution falls
between 2 standard deviations (see Figure 2-3) above and below the mean (techni‐
cally, 1.96, but 2 is a good approximation that is easier to remember).

Figure 2-3. Standard normal distribution

Back to your cross-sell experiments, you now know that the conversion rate would
follow a normal distribution, if you could run multiple similar experiments. The best
estimate you have for the mean of that (unknown) distribution is the mean from your
small experiment. Moreover, the standard error serves as your estimate of the stan‐
dard deviation of that unknown distribution for the sample mean. So, if you multiply
the standard error by 2 and add and subtract it from the mean of your experiments,
you will construct a 95% confidence interval for the true mean:

In [9]: exp_se = short_email.sem()
        exp_mu = short_email.mean()
        ci = (exp_mu - 2 * exp_se, exp_mu + 2 * exp_se)
        print("95% CI for Short Email: ", ci)
        

Out[9]: 95% CI for Short Email:  (0.06436609374091676, 0.18563390625908324)
        

Confidence Intervals | 45



Of course, you don’t need to restrict yourself to the 95% confidence interval. If you
want to be more careful you could generate the 99% interval instead. You just need to
multiply the standard deviation by the factor that will contain 99% of the mass of a
normal distribution.

To find that factor, you can use the ppf function from scipy. This function gives you
the inverse of cumulative distribution function (CDF) of a standard normal distribu‐
tion. For example, ppf(0.5) will return 0.0, saying that 50% of the mass of the stan‐
dard normal distribution is below 0.0. So, for any significance level α, the factor you
need to multiply the SE by in order to get a 1 − α confidence interval is given by
pp f 1 − α /2 :

In [10]: from scipy import stats

         z = np.abs(stats.norm.ppf((1-.99)/2))
         print(z)
         ci = (exp_mu - z * exp_se, exp_mu + z * exp_se)
         ci
         

Out[10]: 2.5758293035489004
         

Out[10]: (0.04690870373460816, 0.20309129626539185)
         

In [11]: stats.norm.ppf((1-.99)/2)
         

Out[11]: -2.5758293035489004
         

46 | Chapter 2: Randomized Experiments and Stats Review



That is for the short email. You could also show the 95% CI for the conversion rate
associated with the other treatment groups:

In [12]: def ci(y: pd.Series):
             return (y.mean() - 2 * y.sem(), y.mean() + 2 * y.sem())

         print("95% CI for Short Email:", ci(short_email))
         print("95% CI for Long Email:", ci(long_email))
         print("95% CI for No Email:", ci(no_email))
         

Out[12]: 95% CI for Short Email: (0.06436609374091676, 0.18563390625908324)
         95% CI for Long Email: (0.01115382234126202, 0.09893792077800403)
         95% CI for No Email: (0.0006919679286838468, 0.08441441505003955)
         

Here, you can see that the 95% CI of the three groups overlap with each other. If they
didn’t, you would be able to conclude that the difference in conversion between the
groups is not simply by chance. In other words, you would be able to say that sending
a cross-sell email causes a statistically significant difference in conversion rates. But
since the intervals do overlap, you can’t say that. At least not yet. Importantly, over‐
lapping confidence intervals is not enough to say that the difference between the

Confidence Intervals | 47



groups is not statistically significant, however, if they didn’t overlap, that would mean
they are statistically different. In other words, nonoverlapping confidence intervals is
conservative evidence for statistical significance.

To recap, confidence intervals are a way to place uncertainty around your estimates.
The smaller the sample size, the larger the standard error, and hence, the wider the
confidence interval. Since they are super easy to compute, lack of confidence intervals
signals either some bad intentions or simply lack of knowledge, which is equally con‐
cerning. Finally, you should always be suspicious of measurements without any
uncertainty metric.

PRACTICAL EXAMPLE

The Effectiveness of COVID-19 Vaccines
Randomized control trials are incredibly important for the pharmaceutical industry.
Perhaps the most widely known examples are the tests conducted to determine the
effectiveness of COVID-19 vaccines, given the tremendous impact those had on
almost everyone on the planet. Here is the result section from the study Efficacy and
Safety of the mRNA-1273 SARS-CoV-2 Vaccine, published in 2020:

The trial enrolled 30,420 volunteers who were randomly assigned in a 1:1 ratio to
receive either vaccine or placebo (15,210 participants in each group). More than 96%
of participants received both injections, and 2.2% had evidence (serologic, virologic,
or both) of SARS-CoV-2 infection at baseline. Symptomatic COVID-19 illness was
confirmed in 185 participants in the placebo group (56.5 per 1,000 person-years; 95%
confidence interval (CI), 48.7 to 65.3) and in 11 participants in the mRNA-1273
group (3.3 per 1,000 person-years; 95% CI, 1.7 to 6.0); vaccine efficacy was 94.1%
(95% CI, 89.3 to 96.8%; P<0.001).

Here is my take on how to interpret these results in the light of the concepts you’ve
been learning. Keep in mind that I’m no health expert and my commentary is purely
about the statistical and causal inference concepts.

First, they defined the treatment and control (placebo) groups, saying that the treat‐
ment was randomly assigned, which ensures independence of the treatment from the
potential outcomes. This would allow them to identify the causal effect of the vaccine
from statistical the quantities E Y T = 0  and E Y T = 1 . Next, they define the out‐
come as being the presence of symptomatic COVID-19 per 1,000 person-years.
Finally, they report the 95% CI for the estimate of E Y T = 0  and E Y T = 1  as
being 48.7 to 65.3 and 1.7 to 6.0, respectively. This tells you that symptomatic
COVID-19 was detected far less in those with the vaccine, compared to those that got
the placebo. They report the efficacy of the vaccine, E Y T = 0 /E Y T = 1 , as well
as the 95% confidence interval around it, 89.3 to 96.8%.

48 | Chapter 2: Randomized Experiments and Stats Review



One final word of caution here. Confidence intervals are trickier to interpret than at
first glance. For instance, I shouldn’t say that a particular 95% confidence interval
contains the true mean with 95% chance. In frequentist statistics, the population
mean is regarded as a true population constant. This constant is either inside or out‐
side a particular confidence interval. In other words, a specific confidence interval
either contains or doesn’t contain the true mean. If it does, the chance of containing it
would be 100%, not 95%. If it doesn’t, the chance would be 0%. Instead, in confidence
intervals, the 95% refers to the frequency that such confidence intervals, computed in
many studies, contains the true mean. The 95% is our confidence in the algorithm
used to calculate the 95% CI, not on the particular interval itself.

Now, having said that, as an economist (statisticians, please look away now), I think
this purism is not very useful. In practice, you will see people saying that the particu‐
lar confidence interval contains the true mean 95% of the time. Although wrong, this
is not very harmful, as it still places a visual degree of uncertainty in your estimates.
What I mean by this is that I would rather you have a confidence interval around
your estimate and interpret it wrong than avoid the confidence interval in fear of
misinterpretation. I don’t care if you say they contain the true mean 95% of the time.
Just, please, never forget to place them around your estimates; otherwise, you will
look silly.

Credible Intervals

If you really want to attach a probability statement to a parameter
estimate being inside an interval, you should check Bayesian credi‐
ble intervals. However, from my experience, in most situations
(especially when the sample size is relatively large) they tend to
yield something similar to the frequentists confidence interval.
This is also why I tend to be more forgiving of misinterpretation of
the confidence interval.

Hypothesis Testing
Another way to incorporate uncertainty is to state a hypothesis test: is the difference
in means between two groups statistically different from zero (or any other value)? To
answer these types of questions, you need to recall that the sum or difference of two
independent normal distributions is also a normal distribution. The resulting mean
will be the sum or difference between the two distributions, while the variance will
always be the sum of the variances:

N μ1, σ1
2 − N μ2, σ2

2 = N μ1 − μ2, σ1
2 + σ2

2

N μ1, σ1
2 + N μ2, σ2

2 = N μ1 + μ2, σ1
2 + σ2

2

Hypothesis Testing | 49



If you don’t remember, it’s OK. You can always use code and simulated data to check
it for yourself:

In [13]: import seaborn as sns
         from matplotlib import pyplot as plt

         np.random.seed(123)

         n1 = np.random.normal(4, 3, 30000)
         n2 = np.random.normal(1, 4, 30000)
         n_diff = n2 - n1

         plt.figure(figsize=(10,4))
         sns.distplot(n1, hist=False, label="$N(4,3^2)$")
         sns.distplot(n2, hist=False, label="$N(1,4^2)$")
         sns.distplot(n_diff, hist=False,
                      label=f"$N(-3, 5^2) = N(1,4^2) - (4,3^2)$")
         plt.legend();
         

If you take two groups, each with a distribution attached to it, and subtract one from
the other, you’ll end up with a third distribution. The mean of this final distribution
will be the difference in the means, and the standard deviation will be the square root
of the sum of the variances. Since you are talking about the distributions of experi‐
ment averages, you can think about the standard deviation of these as the standard
error of the mean:

μdi f f = μ1 − μ2

SEdi f f = SE1
2 + SE2

2

You can use this idea in the problem of comparing the conversion from your cross-
sell email experiment. If you take the estimated distribution of two groups—let’s say,

50 | Chapter 2: Randomized Experiments and Stats Review



the short email and the no email group—and subtract one from the other, you get the
distribution of the difference. With this distribution, you can easily construct a 95%
confidence interval for the difference in means:

In [14]: diff_mu = short_email.mean() - no_email.mean()
         diff_se = np.sqrt(no_email.sem()**2 + short_email.sem()**2)

         ci = (diff_mu - 1.96*diff_se, diff_mu + 1.96*diff_se)
         print(f"95% CI for the difference (short email - no email):\n{ci}")
         

Out[14]: 95% CI for the difference (short email - no email):
         (0.01023980847439844, 0.15465380854687816)
         

Null Hypothesis
With this interval, you can answer questions about what is called a null hypothesis.
For example, you can state the hypothesis that there is no difference in conversion
rate between a short email and no email at all. You’ll usually use H0 to talk about the
null hypothesis:

H0:Conversionno_email = Conversionshort_email

Once you have this hypothesis, it’s time to ask yourself, “Is it likely that I would
observe such a difference if the null hypothesis were true?” You’ll look at the data and
see if it conforms to your null hypothesis. If it doesn’t, you’ll say that seeing such data
would be too weird, if the null hypothesis were true, and hence you should reject it.
One way to do this is with the confidence intervals you have just constructed.

Notice how the preceding 95% confidence interval does not contain zero. Also, recall
that this is the CI of the difference between conversion rates. Since the null hypothesis
states that this difference is zero, but you can see that the confidence interval is
entirely outside zero, you can say that the probability of seeing such a result would be
too low, if the null hypothesis were true. Hence, you can reject the null hypothesis
with 95% confidence.

Hypothesis Testing | 51



Significance Level

The significance level, α, is the chance of rejecting the null when it
is true—committing a Type I error. Significance is set prior to gath‐
ering or analyzing the data. To achieve a certain significance level,
say, 5%, you would construct a 1 − α confidence interval, say 95%,
around your estimate during the analysis.

Of course you can also formulate other null hypotheses, besides the one that states no
difference at all. For example, let’s say there is some cost to sending emails, which is
very realistic. Even if there is no significant monetary cost, if you send too many
emails to customers, eventually they will flag you as spammers, which will shut down
this communication channel with them, leading to lower sales in the future. Under
this situation, perhaps the marketing team is only willing to roll out the cross-sell
email if the lift in conversion rate is higher than 1%. Then, you can state the null
hypothesis as follows: “the difference in conversion rate is 1%.” To test this hypothesis,
all you need to do is shift the confidence interval by subtracting 1% from the differ‐
ence in means:

In [15]: # shifting the CI
         diff_mu_shifted =  short_email.mean() - no_email.mean() - 0.01 
         diff_se = np.sqrt(no_email.sem()**2 + short_email.sem()**2)

         ci = (diff_mu_shifted - 1.96*diff_se, diff_mu_shifted + 1.96*diff_se)
         print(f"95% CI 1% difference between (short email - no email):\n{ci}")
         

Out[15]: 95% CI 1% difference between (short email - no email):
         (0.00023980847439844521, 0.14465380854687815)
         

Since this 95% CI is also above zero, you can also reject this other null hypothesis.
However, now the 95% CI is very close to zero, meaning you would not be able to
reject the null hypothesis of the effect being equal to something like 2%, at least not
with a 95% confidence.

Noninferiority Testing
In this book, most null hypotheses will be stated as an equality (usually to zero). This
type of null is motivated by the desire to treat only if an effect is found to be signifi‐
cantly different from zero. However, in some situations, you want to act only if a
treatment effect is equal to zero. Consider, for instance, the case where you want to
shut down a marketing campaign. You only want to do that if its effect is negligible
(or not high enough to compensate its costs). In these situations, you want to state the
null in terms of a parameter being different from some value.

52 | Chapter 2: Randomized Experiments and Stats Review



That’s because not being able to reject a null like H0 = 0 is not the same thing as
accepting it as true. This is known as the famous adage that “absence of evidence is
not evidence of absence.” The H0 = 0 could be rejected simply because the sample size
is too small, yielding a large confidence interval. This, however, doesn’t point in the
direction of it being true.

To work around this issue, statisticians created noninferiority testing, which is a way
to test for a treatment being equal to another (or having a zero treatment effect). The
basic idea is to see if the confidence interval contains zero, while also making sure it is
small enough.

Test Statistic
Besides confidence intervals, sometimes it is useful to think about rejecting the null
hypothesis in terms of a test statistic. These statistics are often constructed such that
higher values point toward rejection of the null. One of the most commonly used test
statistics is the t-statistic. It can be defined by normalizing the distribution that gives
rise to the confidence interval:

tΔ =
μΔ − H0

SEΔ
=

μ1 − μ2 − H0

σ1
2/n1 + σ2

2/n2

,

where H0 is the value defined by your null hypothesis.

Notice how the numerator is simply the difference between the observed average dif‐
ference and the null hypothesis. If the null were true, the expected value of this
numerator would be zero: E μΔ − H0 = 0. The denominator is simply the standard
error, which normalizes the statistic to have unit variance. It ensures that tΔ follows a
standard normal distribution—N 0, 1 —if the null is true. Since tΔ is centered around
zero under the null, values above or below the 1.96 would be extremely unlikely
(appear less than 95% of the time). This means you can also reject the null hypothesis
if you see such an extreme t-statistics. In our running example, the statistics associ‐
ated with H0 of no effect is greater than 2, meaning you can reject it at a 95% confi‐
dence level:

In [16]: t_stat = (diff_mu - 0) / diff_se
         t_stat
         

Out[16]: 2.2379512318715364
         

Additionally, since t-statistic is normally distributed under the null, you can use it to
easily compute p-values.

Hypothesis Testing | 53



T Versus Normal

Technically speaking using the normal distribution here is not
accurate. Instead, you should use the T distribution with degrees of
freedom equal to the sample size minus the number of parameters
you’ve estimated (2, since you are comparing two means). How‐
ever, with samples above 100, the distinction between the two is of
little practical importance.

p-values
Previously, I’ve said that there is less than a 5% chance you would observe such an
extreme difference if the conversion of customers that received no email and short
email were the same. But can you precisely estimate what that chance is? How likely
are you to observe such an extreme value? Enter p-values!

Like with confidence intervals (and most frequentist statistics, as a matter of fact), the
true definition of p-values can be very confusing. So, to not take any risks, I’ll copy
the definition from Wikipedia: “the p-value is the probability of obtaining test results
at least as extreme as the results actually observed during the test, assuming that the
null hypothesis is correct.”

To put it more succinctly, the p-value is the probability of seeing such data, if the null
hypothesis were true (see Figure 2-4). It measures how unlikely that measurement
you are seeing is, considering that the null hypothesis is true. Naturally, this often gets
confused with the probability of the null hypothesis being true. Note the difference
here. The p-value is not P H0 data , but rather P data H0 .

Figure 2-4. p-value is the probability of seeing a extreme statistic, given that the null
hypothesis is true

To get the p-value, all you need to do is compute the area under the standard normal
distribution before the test-statistic for a one-sided null hypothesis (“the difference is

54 | Chapter 2: Randomized Experiments and Stats Review



greater than x” or “the difference is smaller than x”) and multiply the result by 2 for a
two-sided null hypothesis (“the difference is x”):

In [17]: print("p-value:", (1 - stats.norm.cdf(t_stat))*2)
         

Out[17]: P-value: 0.025224235562152142
         

The p-value is interesting because it frees you from having to specify a confidence
level, like 95% or 99%. But, if you wish to report one, from the p-value, you know
precisely at which confidence your test will pass or fail. For instance, with a p-value of
0.025, you’ll have significance up to the 2.5% level. So, while the 95% CI for the differ‐
ence will not contain zero, the 99% CI will. This p-value also means that there is only
a 2.5% chance of observing this extreme test statistic, if the difference was truly zero.

PRACTICAL EXAMPLE

Face-to-Face Versus Online Learning
Besides the direct impact of the virus, the 2020 pandemic brought other important
issues with it. Chief among those was the fact that kids could not go to school, so
learning was taken to the online environment for as much as two years. It’s hard to
estimate the generational impact this will have, since the decision to come back from
the online environment to a face-to-face one was not randomized. In Brazil, for
example, public schools took longer to open up, compared to private schools.

However, although certainly not trivial, one can design an experiment to test the
impact of online versus face-to-face learning, as Figlio, Rush, and Yin did in “Is It Live
or Is It Internet? Experimental Estimates of the Effects of Online Instruction on Stu‐
dent Learning” (2013). Here is the abstract:

Students in a large introductory microeconomics course at a major research univer‐
sity were randomly assigned to live lectures versus watching these same lectures in an
internet setting, where all other factors (e.g., instruction, supplemental materials)
were the same. Counter to the conclusions drawn by a recent U.S. Department of
Education meta-analysis of nonexperimental analyses of internet instruction in
higher education, we find modest evidence that live-only instruction dominates
internet instruction. These results are particularly strong for Hispanic students, male
students, and lower-achieving students. We also provide suggestions for future exper‐
imentation in other settings.

Notice that this study was conducted at a university in the US; it’s hard to say those
results will generalize to basic education and to other countries. In technical terms,
we say that the study has internal validity, as treatment and control groups are compa‐
rable due to randomization. But this study might not have external validity in terms
of generalizing its results to other settings, since the people in it were not a random
sample of the population, but rather economics students from a US university.

p-values | 55



Power
So far, you’ve been looking into these statistical concepts from the perspective of a
data analyst who’s been presented with the data from an existing test. You are treating
the data as given. But what if you are asked to design an experiment, instead of just
reading one that was already designed? In this case, you need to decide the sample
you would like to have for each variant. For example, what if you haven’t yet run the
cross-sell email experiment, but, instead, need to decide how many customers you
should send the long email and how many, the short email and no email at all? From
this perspective, the goal is to have a big enough sample so that you can correctly
reject the null hypothesis of no effect, if it is indeed false. The probability that a test
correctly rejects the null hypothesis is called the power of the test. It’s not only a useful
concept if you want to figure out the sample size you need for an experiment, but also
for detecting issues in poorly run experiments.

Power is closely related to statistical significance. While α is the chance of rejecting
the null hypothesis when it is actually true, power (1 − β) is the chance of rejecting
the null when it is false. In some sense, power is also defined in terms of α as in order
to correctly reject the null, you need to specify how much evidence you need for
rejection.

Recall how the 95% confidence interval means that 95% of the experiments will con‐
tain the true parameter you are trying to estimate. This also means that 5% of them
won’t, which will cause you to falsely reject the null hypothesis 5% of the time. With
α = 0.05, you need δ, the difference between the parameter estimate and the null
hypothesis, to be at least 1.96SE away from zero in order to conclude that it is statisti‐
cally significant. That’s because δ − 1.96SE is the lower end of the 95% confidence
interval.

56 | Chapter 2: Randomized Experiments and Stats Review



OK, so you need δ − 1.96SE > 0 to claim the result as significant. But how likely are
you to see this significant difference? This is where you need to think about power.
Power is the chance of correctly rejecting the null, or 1 − β, with β being the probabil‐
ity of not rejecting the null when it is false (probability of false negative). The indus‐
try standard for power is 80%, meaning that you’ll only have a 20% (β = 0.2) chance
of not rejecting the null, when it is indeed false. To achieve 80% power, you need to
reject the null hypothesis 80% of the time when it is false. Since rejecting the null
means that δ − 1.96SE > 0 , you need to get this big difference 80% of the time. In
other words, you need to get the lower end of the 95% CI above zero, 80% of the time.

What is striking (or not) is that the lower end of the 95% confidence interval also fol‐
lows a normal distribution. Just like the distribution of the sample average, the distri‐
bution of the lower end of the 95% CI has variance equal to the SE, but now the mean
is δ − 1.96SE. It is just the distribution of the sample average, shifted by 1.96SE.
Therefore, in order to have δ − 1.96SE > 0 80% of the time (80% power), you need
the difference to be 1.96 + 0.84SE away from zero: 1.96 to give you the 95% CI and
0.84 so that the lower end of that interval falls above zero 80% of the time.

In [18]: stats.norm.cdf(0.84)
         

Out[18]: 0.7995458067395503
         

Sample Size Calculation
Another way to look at this is to realize that δ—the difference between the null
hypothesis and the observed estimate—must be detectable if the null is false. With
α = 5 % and 1 − β = 80 %, the detectable effect is given by 2.8SE = 1.96SE + 0.84SE .
So, if you want to craft a cross-sell email experiment where you want to detect a 1%
difference, you must have a sample size that gives you at least 1% = 2.8SE. If you open

Sample Size Calculation | 57



up the SE formula for the difference, you have SEΔ = SE1
2 + SE2

2. But recall that you
are now speaking from the perspective of an analyst who has not seen the experi‐
ment, but is actually trying to design it. In this case, you don’t have the SE of the
treated group, but you can assume that the variance in both treated and control will
be the same and hence SEΔ = 2SE2 = 2σ2/n = σ 2/n. Plugging this in the detecta‐
ble difference, you end up with a pretty simple formula for determining the sample
size of each variant in a test if you want 80% power and 95% significance:

δ = 2 . 8σ 2/n

n = 2 * 2 . 82σ2/δ2 ≈ 16σ2/δ2

where δ is the detectable difference and I’ve rounded 2 * 2.82 to be conservative.
Applying this formula to your data, using the variance of the control group as our
best guess for σ2, you end up with the following required sample size:

In [19]: np.ceil(16 * no_email.std()**2/0.01)
         

Out[19]: 66.0
         

In [20]: data.groupby("cross_sell_email").size()
         

Out[20]: cross_sell_email
         long        109
         no_email     94
         short       120
         dtype: int64
         

This is of course invaluable in terms of experiment design, but is also good news for
the cross-sell experiment we currently have. In it, we have more than 100 samples for
both treatment groups and 94 samples for the control, which indicates a properly
powered test.

See Also

This very simple way of calculating sample size was taken from
“A/B Testing Intuition Busters: Common Misunderstandings in
Online Controlled Experiments” (2022), by Ron Kohavi et al. This
sample size formula is only one of the many very interesting and
useful things presented in the article, so I definitely recommend
you check it out.

58 | Chapter 2: Randomized Experiments and Stats Review



Key Ideas
The idea of this chapter was to link causal identification with estimation (and also
review some important statistical concepts). Recall that the goal of causal inference is
to learn about causal quantities from data. The first step in the process is identifica‐
tion, where you use key assumptions to go from unobservable causal quantities to
observable statistical quantities you can estimate from data.

For example, the ATE is a causal quantity; it is defined by the unobservable potential
outcomes ATE = E Y1 − Y0 . To identify the ATE, you use the independence assump‐
tion, T ⊥ Y0, Y1 , which allows you to write it in terms of observable quantities,
E Y T = 1 , and E Y T = 0 . That is, under the independence assumption:

E Y1 − Y0 = E Y T = 1 − E Y T = 0

You also saw how you could use randomized control trials (RCTs) to make this
assumption more plausible. If you randomize the treatment, you are brute-forcing it
to be independent from the potential outcomes Yt.

But identification is just the first step in causal inference. Once you are able to write
the causal quantities in terms of statistical quantities, you still need to estimate those
statistical quantities. For instance, even though you can write the ATE in terms of
E Y T = 1  and E Y T = 0 , you still need to estimate them.

The second part of this chapter covered statistical concepts used in that estimation
process. Specifically, you learned about the standard error:

SE = σ / n,

and how to use it to place confidence intervals around an estimate μ:

μ ± z * SE,

where z is the value between which lies α% of the mass of a normal distribution.

You also learned how to construct a confidence interval for a difference in averages
between two groups, which boiled down to summing the variances for those groups
and finding a standard error for the difference:

SEdi f f = SE1
2 + SE2

2

Key Ideas | 59



Finally, you learned about power and how it can be used to calculate the sample size
for an experiment you wish to run. Specifically, for 95% confidence and 80% power,
you could simplify the sample size formula to:

N = 16 * σ2/δ

where σ2 is the variance of the outcome and δ is the detectable difference.

60 | Chapter 2: Randomized Experiments and Stats Review



CHAPTER 3

Graphical Causal Models

In Chapter 1 you saw how causal inference can be broken down into two problems:
identification and estimation. In this chapter, you’ll dive deeper into the identification
part, which is arguably the most challenging one. This chapter is mostly theoretical,
as you will be playing with graphical models without necessarily estimating their
parameters with data. Don’t let this fool you. Identification is the heart of causal infer‐
ence, so learning its theory is fundamental for tackling causal problems in real life. In
this chapter, you will:

• Get an introduction to graphical models, where you will learn what a graphical
model for causality is, how associations flow in a graph, and how to query a
graph using off-the-shelf software.

• Revisit the concept of identification through the lens of graphical models.
• Learn about two very common sources of bias that hinder identification, their

causal graph structure, and what you can do about them.

Thinking About Causality
Have you ever noticed how those cooks in YouTube videos are excellent at describing
food? “Reduce the sauce until it reaches a velvety consistency.” If you are just learning
to cook, you have no idea what this even means. Just give me the time I should leave
this thing on the stove, will you! With causality, it’s the same thing. Suppose you walk
into a bar and hear folks discussing causality (probably a bar next to an economics
department). In that case, you will hear them say how the confounding of income
made it challenging to identify the effect of immigration on that neighborhood
unemployment rate, so they had to use an instrumental variable. And by now, you
might not understand what they are talking about. That’s OK. You’ve only scratched

61



the surface when it comes to understanding the language of causal inference. You’ve
learned a bit about counterfactual outcomes and biases; enough so you could under‐
stand the key issue causal inference is trying to solve. Enough to appreciate what’s
going on behind the most powerful tool of causal inference: randomized controlled
trials. But this tool won’t always be available or simply won’t work (as you’ll soon see
in “Selection Bias” on page 83). As you encounter more challenging causal inference
problems, you’ll also need a broader understanding of the causal inference language,
so you can properly understand what you are facing and how to deal with it.

A well-articulated language allows you to think clearly. This chapter is about broad‐
ening your causal inference vocabulary. You can think of graphical models as one of
the fundamental languages of causality. They are a powerful way of structuring a
causal inference problem and making identification assumptions explicit, or even vis‐
ual. Graphical models will allow you to make your thoughts transparent to others and
to yourself.

Structural Causal Model

Some scientists use the term structural causal model (SCM) to refer
to a unifying language of causal inference. These models are com‐
posed of graphs and causal equations. Here, I’ll mostly focus on the
graph aspect of SCMs.

As a starting point into the fantastic world of graphs, let’s take our previous example
of estimating the impact of emails on conversion. In that example, the treatment T is
cross-sell email and the outcome Y is if a customer converted to a new product
or not:

In [1]: import pandas as pd
        import numpy as np

        data = pd.read_csv("./data/cross_sell_email.csv")
        data
        

gender cross_sell_email age conversion
0 0 short 15 0
1 1 short 27 0
2 1 long 17 0
... ... ... ... ...
320 0 no_email 15 0
321 1 no_email 16 0
322 1 long 24 1

62 | Chapter 3: Graphical Causal Models



Let’s also recall from the previous chapter that, in this problem, T is randomized.
Hence, you can say that the treatment is independent from the potential outcomes,
Y0, Y1 ⊥ T, which makes association equal to causation:

E Y1 − Y0 = E Y T = 1 − E Y T = 0

Importantly, there is absolutely no way of telling that the independence assumption
holds just by looking at the data. You can only say that it does because you have infor‐
mation about the treatment assignment mechanism. That is, you know that emails
were randomized.

Visualizing Causal Relationships
You can encode this knowledge in a graph, which captures your beliefs about what
causes what. In this simple example, let’s say you believe that cross-sell emails cause
conversion. You also believe that the other variables you measured, age and gender,
also cause conversion. Moreover, you can also add variables you didn’t measure to the
graph. We usually denote them by the letter U, since they are unobserved. There are
probably many unobserved variables that cause conversion (like customer income,
social background), and age (how your product appeals to different demographics,
the city the company is operating in). But since you don’t measure them, you can
bundle everything into a U node that represents all those unmeasured variables. 
Finally, you can add a randomization node pointing to T, representing your knowl‐
edge of the fact that the cross-sell email was randomized.

DAG

You might find people referring to causal graphs as DAGs. The
acronym stands for directed acyclic graph. The directed part tells
you that the edges have a direction, as opposed to undirected
graphs, like a social network, for example. The acyclic part tells you
that the graph has no loops or cycles. Causal graphs are usually
directed and acyclic because causality is nonreversible.

To add those beliefs of yours to a graph and literally see them, you can use graphviz:

In [2]: import graphviz as gr

        g_cross_sell = gr.Digraph()

        g_cross_sell.edge("U", "conversion")
        g_cross_sell.edge("U", "age")
        g_cross_sell.edge("U", "gender")

        g_cross_sell.edge("rnd", "cross_sell_email")

Thinking About Causality | 63



        g_cross_sell.edge("cross_sell_email", "conversion")
        g_cross_sell.edge("age", "conversion")
        g_cross_sell.edge("gender", "conversion")

        g_cross_sell
        

Each node in the graph is a random variable. You can use arrows, or edges, to show if
a variable causes another. In this graphical model, you are saying that email causes
conversion, that U causes age, conversion, and gender, and so on and so forth. This
language of graphical models will help you clarify your thinking about causality, as it
makes your beliefs about how the world works explicit. If you are pondering how
impractical this is—after all, there is no way you are going to encode all the hundreds
of variables that are commonly present in today’s data applications—rest assured you
won’t need to. In practice, you can radically simplify things, by bundling up nodes,
while also keeping the general causal story you are trying to convey. For example, you
can take the preceding graph and bundle the observable variables into an X node.
Since they both are caused by U and cause conversion, your causal story remains
intact by joining them.

Also, when you are representing variables that have been randomized or intervened
on, you can just remove all incoming arrows from it:

In [3]: # rankdir:LR layers the graph from left to right
        g_cross_sell = gr.Digraph(graph_attr={"rankdir": "LR"})

        g_cross_sell.edge("U", "conversion")
        g_cross_sell.edge("U", "X")

        g_cross_sell.edge("cross_sell_email", "conversion")
        g_cross_sell.edge("X", "conversion")

        g_cross_sell
        

64 | Chapter 3: Graphical Causal Models



What is interesting to realize here is that perhaps the most important information in a
DAG is actually what is not in it: an edge missing from one variable to another means
there is an assumption of no direct causal link between the two. For example, in the
preceding graph, you are assuming that nothing causes both the treatment and the
outcome.

Just like with every language you learn, you are probably looking into this and think‐
ing it doesn’t all make complete sense. That’s normal. I could just throw at you a
bunch of rules and best practices to represent causal relationships between variables
in a graph. But that is probably the least efficient way of learning. Instead, my plan is
to simply expose you to lots and lots of examples. With time, you will get the hang of
it. For now, I just want you to keep in mind that graphs are a very powerful tool for
understanding why association isn’t causation.

Are Consultants Worth It?
To see the power of DAGs, let’s consider a more interesting example, where the treat‐
ment is not randomized. Let’s suppose you are the manager of a company contem‐
plating the decision of whether to bring in some top-notch consultants. You know
that they are expensive, but you also know that they have expert knowledge from
working with the best companies in the business. To make things more complicated,
you are not sure if the top-notch consultants will improve your business or if it is just
the case that only very profitable businesses can afford those consultants, which is
why their presence correlates with strong business performance. It would be awesome
if someone had randomized the presence of consultants, as this would make answer‐
ing the question trivial. But of course you don’t have that luxury, so you will have to
come up with something else. As you can probably see by now, this is a problem of
untangling causation from association. To understand it, you can encode your beliefs
about its causal mechanisms in a graph:

Thinking About Causality | 65



Notice how I’ve added U nodes to each of these variables to represent the fact that
there are other things we can’t measure causing them. Since graphs usually represent
random variables, it is expected that a random component will cause all the variables,
which is what those Us represent. However, they won’t add anything to the causal
story I’m going to tell, so I might just as well omit them:

Here, I’m saying that the past performance of a company causes the company to hire
a top-notch consultant. If the company is doing great, it can afford to pay the expen‐
sive service. If the company is not doing so great, it can’t. Hence, past performance
(measured here by past profits) is what determines the odds of a company hiring a
consultant. Remember that this relationship is not necessarily deterministic. I’m just
saying that companies that are doing well are more likely to hire top-notch
consultants.

Not only that, companies that did well in the past 6 months are very likely to also do
well in the next 6 months. Of course, this doesn’t always happen, but, on average, it
does, which is why you also have an edge from past performance to future perfor‐
mance. Finally, I’ve added an edge from consultancy to the firm’s future performance.
Your goal is to know the strengths of this connection. This is the causal relationship
you care about. Does consultancy actually cause company performance to increase?

Answering this question is not straightforward because there are two sources of asso‐
ciation between consultancy and future performance. One is causal and the other is
not. To understand and untangle them, you first need to take a quick look at how
association flows in causal graphs.

Crash Course in Graphical Models
Schools offer whole semesters on graphical models. By all means, if you want to go
deep in graphical models, it will be very beneficial for your understanding of causal
inference. But, for the purpose of this book, it is just (utterly) important that you
understand what kind of independence and conditional independence assumptions a
graphical model entails. As you’ll see, associations flow through a graphical model as
water flows through a stream. You can stop this flow or enable it, depending on how
you treat the variables in the graph. To understand this, let’s examine some common
graphical structures and examples. They will be pretty straightforward, but they are
the sufficient building blocks to understand everything about the flow of association,
independence, and conditional independence on graphical models.

66 | Chapter 3: Graphical Causal Models



Chains
First, look at this very simple graph. It’s called a chain. Here T causes M, which causes
Y. You can sometimes refer to the intermediary node as a mediator, because it medi‐
ates the relationship between T and Y:

In this first graph, although causation only flows in the direction of the arrows, asso‐
ciation flows both ways. To give a more concrete example, let’s say that knowing
about causal inference improves your problem-solving skills, and problem solving
increases your chances of getting a promotion. So causal knowledge causes your
problem-solving skills to increase, which in turn causes you to get a job promotion.
You can say here that job promotion is dependent on causal knowledge. The greater
the causal expertise, the greater your chances of getting a promotion. Also, the greater
your chances of promotion, the greater your chance of having causal knowledge.
Otherwise, it would be difficult to get a promotion. In other words, job promotion is
associated with causal inference expertise the same way that causal inference expertise
is associated with job promotion, even though only one of the directions is causal. 
When two variables are associated with each other, you can say they are dependent or
not independent:

T ⊥ ̸ Y

Now, let’s hold the intermediary variable fixed. You could do that by looking only at
people with the same M, or problem-solving skills in our example. Formally, you can
say you are conditioning on M. In this case, the dependence is blocked. So, T and Y
are independent given M. You can write this mathematically as:

T ⊥ Y M

To indicate that we are conditioning on a node, I’ll shade it:

Crash Course in Graphical Models | 67



To see what this means in our example, think about conditioning on people’s
problem-solving skills. If you look at a bunch of people with the same problem-
solving skills, knowing which ones are good at causal inference doesn’t give any fur‐
ther information about their chances of getting a job promotion. In mathematical
terms:

E Promotion Solve problems, Causal knowledge = E Promotion Solve problems

The inverse is also true; once I know how good you are at solving problems, knowing
about your job promotion status gives me no further information about how likely
you are to know causal inference.

As a general rule, if you have a chain like in the preceding graph, association flowing
in the path from T to Y is blocked when you condition on an intermediary variable
M. Or:

T ⊥ ̸ Y

but

T ⊥ Y M

Forks
Moving on, let’s consider a fork structure. In this structure, you have a common
cause: the same variable causes two other variables down the graph. In forks, associa‐
tion flows backward through the arrows:

For example, let’s say your knowledge of statistics causes you to know more about
causal inference and about machine learning. However, knowing causal inference
doesn’t help you with machine learning and vice versa, so there is no edge between
those variables.

This graph is telling you that if you don’t know someone’s level of statistical knowl‐
edge, then knowing that they are good at causal inference makes it more likely that
they are also good at machine learning, even if causal inference doesn’t help you with
machine learning. That is because even if you don’t know someone’s level of statistical

68 | Chapter 3: Graphical Causal Models



knowledge, you can infer it from their causal inference knowledge. If they are good at
causal inference, they are probably good at statistics, making it more likely that they
are also good at machine learning. The variables at the tip of a fork move together
even if they don’t cause each other, simply because they are both caused by the same
thing. In the causal inference literature, when we have a common cause between a
treatment and the outcome, we call that common cause a confounder.

The fork structure is so important in causal inference that it deserves another exam‐
ple. Do you know how tech recruiters sometimes ask you to solve problems that
you’ll probably never find in the job you are applying for? Like when they ask you to
invert a binary tree or count duplicate elements in Python? Well, they are essentially
leveraging the fact that association flows through a fork structure in the following
graph:

The recruiter knows that good programmers tend to be top performers. But when
they interview you, they don’t know if you are a good programmer or not. So they ask
you a question that you’ll only be able to answer if you are. That question doesn’t
have to be about a problem that you’ll encounter in the job you are applying for. It
just signals whether you are a good programmer or not. If you can answer the ques‐
tion, you will likely be a good programmer, which means you will also likely be a
good employee.

Now, let’s say that the recruiter already knows that you are a good programmer.
Maybe they know you from previous companies or you have an impressive degree. In
this case, knowing whether or not you can answer the application process questions
gives no further information on whether you will be a good employee or not. In tech‐
nical terms, you can say that answering the question and being a good employee are
independent, once you condition on being a good programmer.

More generally, if you have a fork structure, two variables that share a common cause
are dependent, but independent when you condition on the common cause. Or:

T ⊥ ̸ Y

but

T ⊥ Y X

Crash Course in Graphical Models | 69



Immorality or Collider
The only structure missing is the immorality (and yes, this is a technical term). An
immorality is when two nodes share a child, but there is no direct relationship
between them. Another way of saying this is that two variables share a common
effect. This common effect is often referred to as a collider, since two arrows collide
at it:

In an immorality, the two parent nodes are independent of each other. But they
become dependent if you condition on the common effect. For example, consider
that there are two ways to get a job promotion. You can either be good at statistics or
flatter your boss. If I don’t condition on your job promotion, that is, I don’t know if
you will or won’t get it, then your level of statistics and flattering are independent. In
other words, knowing how good you are at statistics tells me nothing about how good
you are at flattering your boss. On the other hand, if you did get a job promotion,
suddenly, knowing your level of statistics tells me about your flattering level. If you
are bad at statistics and did get a promotion, you will likely be good at flattering your
boss. Otherwise, it will be very unlikely for you to get a promotion. Conversely, if you
are good at statistics, it is more likely that you are bad at flattering, as being good at
statistics already explains your promotion. This phenomenon is sometimes called
explaining away, because one cause already explains the effect, making the other cause
less likely.

As a general rule, conditioning on a collider opens the association path, making the
variables dependent. Not conditioning on it leaves it closed. Or:

T ⊥ Y

and

T ⊥ ̸ Y | X

Importantly, you can open the same dependence path if instead of conditioning on
the collider, you condition on a effect (direct or not) of the collider. Continuing with
our example, let’s now say that getting a job promotion massively increases your sal‐
ary, which gives you the next graph:

70 | Chapter 3: Graphical Causal Models



In this graph, even if you don’t condition on the collider, but condition on a cause of
it, the causes of the collider become dependent. For instance, even if I don’t know
about your promotion, but I do know about your massive salary, your knowledge
about statistics and boss flattering become dependent: having one makes it less likely
that you also have the other.

The Flow of Association Cheat Sheet
Knowing these three structures—chains, forks, and immoralities—you can derive an
even more general rule about independence and the flow of association in a graph.

A path is blocked if and only if:

1. It contains a non-collider that has been conditioned on.
2. It contains a collider that has not been conditioned on and has no descendants

that have been conditioned on.

Figure 3-1 is a cheat sheet about how dependence flows in a graph.

If these rules seem a bit opaque or hard to grasp, now is a good time for me to tell you
that, thankfully, you can use off-the-shelf algorithms to check if two variables in a
graph are associated with each other or if they are independent. To tie everything you
learned together, let’s go over a final example so I can show you how to code it up.

Crash Course in Graphical Models | 71



Figure 3-1. Cheat sheet about how dependence flows in a graph

Querying a Graph in Python
Take the following graph:

In a moment, you’ll input this graph to a Python library that will make answering
questions about it pretty easy. But before you do that, as an exercise to internalize the
concepts you’ve just learned, try to answer the following questions on your own:

• Are D and C dependent?
• Are D and C dependent given A?
• Are D and C dependent given G?
• Are A and B dependent?
• Are A and B dependent given C?

72 | Chapter 3: Graphical Causal Models



• Are G and F dependent?
• Are G and F dependent given E?

Now, to see if you got them right, you can input that graph into a DiGraph, from
networkx. networkx is a library to handle graphical models and has a bunch of handy
algorithms that will help you inspect this graph:

In [4]: import networkx as nx

        model = nx.DiGraph([
            ("C", "A"),
            ("C", "B"),
            ("D", "A"),
            ("B", "E"),
            ("F", "E"),
            ("A", "G"),
        ])
        

As a starter, let’s take D and C. They form the immorality structure you saw earlier,
with A being a collider. From the rule about independence in an immorality struc‐
ture, you know that D and C are independent. You also know that if you condition on
the collider A, association starts to flow between them. The method d_separated tells
you if association flows between two variables in the graph (d-separation is another
way of expressing the independence between two variables in a graph). To condition
on a variable, you can add it to the observed set. For example, to check if D and C are
dependent given A, you can use d_separated and pass the fourth argument z={"A"}:

In [5]: print("Are D and C dependent?")
        print(not(nx.d_separated(model, {"D"}, {"C"}, {})))

        print("Are D and C dependent given A?")
        print(not(nx.d_separated(model, {"D"}, {"C"}, {"A"})))

        print("Are D and C dependent given G?")
        print(not(nx.d_separated(model, {"D"}, {"C"}, {"G"})))
        

Out[5]: Are D and C dependent?
        False
        Are D and C dependent given A?
        True
        Are D and C dependent given G?
        True
        

Next, notice that D, A, and G form a chain. You know that association flows in a
chain, so D is not independent from G. However, if you condition on the intermedi‐
ary variable A, you block the flow of association:

Crash Course in Graphical Models | 73



In [6]: print("Are G and D dependent?")
        print(not(nx.d_separated(model, {"G"}, {"D"}, {})))

        print("Are G and D dependent given A?")
        print(not(nx.d_separated(model, {"G"}, {"D"}, {"A"})))
        

Out[6]: Are G and D dependent?
        True
        Are G and D dependent given A?
        False
        

The last structure you need to review is the fork. You can see that A, B, and C form a
fork, with C being a common cause of A and B. You know that association flows
through a fork, so A and B are not independent. However, if you condition on the
common cause, the path of association is blocked:

In [7]: print("Are A and B dependent?")
        print(not(nx.d_separated(model, {"A"}, {"B"}, {})))

        print("Are A and B dependent given C?")
        print(not(nx.d_separated(model, {"A"}, {"B"}, {"C"})))
        

Out[7]: Are A and B dependent?
        True
        Are A and B dependent given C?
        False
        

Finally, let’s put everything together and talk about G and F. Does association flow
between them? Let’s start at G. You know that association flows between G and E,
since they are in a fork. However, association stops at the collider E, which means that
G and F are independent. Yet if you condition on E, association starts to flow through
the collider and the path opens, connecting G and F:

In [8]: print("Are G and F dependent?")
        print(not(nx.d_separated(model, {"G"}, {"F"}, {})))

        print("Are G and F dependent given E?")
        print(not(nx.d_separated(model, {"G"}, {"F"}, {"E"})))
        

Out[8]: Are G and F dependent?
        False
        Are G and F dependent given E?
        True
        

This is great. Not only did you learn the three basics structures in graphs, you also
saw how to use off-the-shelf algorithms to check for independences in the graph. But
what does this have to do with causal inference? It’s time to go back to the problem we

74 | Chapter 3: Graphical Causal Models



were exploring at the beginning of the chapter. Recall that we were trying to
understand the impact of hiring expensive, top-notch consultants on business perfor‐
mance, which we depicted as the following graph:

You can use your newly acquired skills to see why association is not causation in this
graph. Notice that you have a fork structure in this graph. Therefore, there are two
flows of association between consultancy and company’s future performance: a direct
causal path and a noncausal path that is confounded by a common cause. This latter
one is referred to as a backdoor path. The presence of a confounding backdoor path in
this graph demonstrates that the observed association between consultancy and com‐
pany performance cannot be solely attributed to a causal relationship.

Understanding how associations flow in a graph through noncausal paths will allow
you to be much more precise when talking about the difference between association
and causation. For this reason, it pays to revisit the concept of identification, now
under the new light of graphical models.

Identification Revisited
So far, in the absence of randomization, the argument I’ve been using to explain why
it is so hard to find the causal effect is that treated and untreated are not comparable
to each other. For example, companies that hire consultants usually have better past
performance than those that don’t hire expensive consultants. This results in the sort
of bias you’ve seen before:

E Y T = 1 − E Y T = 0 = E Y1 − Y0 T = 1
ATT

+ E Y0 T = 1 − E Y0 T = 0
BIAS

Now that you’ve learned about causal graphs, you can be more precise about the
nature of that bias and, more importantly, you can understand what you can do to
make it go away. Identification is intimately related to independence in a graphical
model. If you have a graph that depicts the causal relationship between the treatment,
the outcome, and other relevant variables, you can think about identification as the
process of isolating the causal relationship between the treatment and the outcome in
that graph. During the identification phase, you will essentially close all undesirable
flows of association.

Identification Revisited | 75



Take the consultancy graph. As you saw earlier, there are two association paths
between the treatment and the outcome, but only one of them is causal. You can
check for bias by creating a causal graph that is just like the original one, but with the
causal relationship removed. If treatment and outcome are still connected in this
graph, it must be due to a noncausal path, which indicates the presence of bias:

In [9]: consultancy_model_severed = nx.DiGraph([
            ("profits_prev_6m", "profits_next_6m"),
            ("profits_prev_6m", "consultancy"),
        #     ("consultancy", "profits_next_6m"), # causal relationship removed
        ])

        not(nx.d_separated(consultancy_model_severed,
                           {"consultancy"}, {"profits_next_6m"}, {}))
        

Out[9]: True
        

These noncausal flows of association are referred to as backdoor paths. To identify the
causal relationship between T and Y, you need to close them so that only the causal
path one remains. In the consultancy example, you know that conditioning on the
common cause, the company’s past performance, closes that path:

CIA and the Adjustment Formula
You just saw that conditioning on profits_prev_6m blocks the noncausal association
flow between the treatment, consultancy, and the outcome—the company’s future
performance. As a result, if you look at a group of companies with similar past per‐
formance and, inside that group, compare the future performance of those that hired
consultants with those that didn’t, the difference can be entirely attributed to the
consultants. This makes intuitive sense, right? The difference in future performance
between the treated (companies that hired consultants) and the untreated is 1) due to

76 | Chapter 3: Graphical Causal Models



the treatment itself and 2) due to the fact that companies that hire consultants tend to
be doing well to begin with. If you just compare treated and untreated companies that
are doing equally well, the second source of difference disappears.

Of course, like with everything in causal inference, you are making an assumption
here. Specifically, you are assuming that all sources of noncausal association between
the treated and the outcome is due to the common causes you can measure and con‐
dition on. This is very much like the independence assumption you saw earlier, but in
its weaker form:

Y0, Y1 ⊥ T X

This conditional independence assumption (CIA) states that, if you compare units
(i.e.,companies) with the same level of covariates X, their potential outcomes will be,
on average, the same. Another way of saying this is that treatment seems as if it were
randomized, if you look at units with the same values of covariate X.

CIA Names

The CIA permeates a lot of causal inference research and it goes by
many names, like ignorability, exogeneity, or exchangeability.

The CIA also motivates a very simple way to identify the causal effect from observa‐
ble quantities in the data. If treatment looks as good as random within groups of X,
all you need to do is compare treated and untreated inside each of the X defined
groups and average the result using the size of the group as weights:

ATE = EX E Y T = 1 − E Y T = 0

ATE = ∑
x

E Y T = 1, X = x − E Y T = 0, X = x P X = x

= ∑
x

E Y T = 1, X = x P X = x − E Y T = 0, X = x P X = x

This is called the adjustment formula or conditionality principle. It says that, if you
condition on or control for X, the average treatment effect can be identified as the
weighted average of in-group differences between treated and control. Again, if con‐
ditioning on X blocks the flow of association through the noncausal paths in the
graph, a causal quantity, like the ATE, becomes identifiable, meaning that you can
compute it from observable data. The process of closing backdoor paths by adjusting
for confounders gets the incredibly creative name of backdoor adjustment.

CIA and the Adjustment Formula | 77



Positivity Assumption
The adjustment formula also highlights the importance of positivity. Since you are
averaging the difference between treatment and outcome over X, you must ensure
that, for all groups of X, there are some units in the treatment and some in the con‐
trol, otherwise the difference is undefined. More formally, you can say that the condi‐
tional probability of the treatment needs to be strictly positive and below 1:
1 > P T X > 0. Identification is still possible when positivity is violated, but it will
require you to make dangerous extrapolations.

Positivity Names

Since the positivity assumption is also very popular in causal infer‐
ence, it too goes by many names, like common support or overlap.

An Identification Example with Data
Since this might be getting a bit abstract, let’s see how it all plays out with some data.
To keep our example, let’s say you’ve collected data on six companies, three of which
had low profits (1 million USD) in the past six months and three of which had high
profits. Just like you suspected, highly profitable companies are more likely to hire
consultants. Two out of the three high-profit companies hired them, while only one
out of the three low-profit companies hired consultants (if the low sample bothers
you, please pretend that each data point here actually represents 10,000 companies):

In [10]: df = pd.DataFrame(dict(
             profits_prev_6m=[1.0, 1.0, 1.0, 5.0, 5.0, 5.0],
             consultancy=[0, 0, 1, 0, 1, 1],
             profits_next_6m=[1, 1.1, 1.2, 5.5, 5.7, 5.7],
         ))

         df
         

profits_prev_6m consultancy profits_next_6m
0 1.0 0 1.0
1 1.0 0 1.1
2 1.0 1 1.2
3 5.0 0 5.5
4 5.0 1 5.7
5 5.0 1 5.7

If you simply compare profits_next_6m of the companies that hired consultants
with those that didn’t, you’ll get a difference of 1.66 MM in profits:

78 | Chapter 3: Graphical Causal Models



In [11]: (df.query("consultancy==1")["profits_next_6m"].mean() 
          - df.query("consultancy==0")["profits_next_6m"].mean())
         

Out[11]: 1.666666666666667
         

But you know better. This is not the causal effect of consultancy on a company’s per‐
formance, since the companies that performed better in the past are overrepresented
in the group that hired consultants. To get an unbiased estimate of the effect of con‐
sultants, you need to look at companies with similar past performance. As you can
see, this yields more modest results:

In [12]: avg_df = (df
                   .groupby(["consultancy", "profits_prev_6m"])
                   ["profits_next_6m"]
                   .mean())

         avg_df.loc[1] - avg_df.loc[0] 
         

Out[12]: profits_prev_6m
         1.0    0.15
         5.0    0.20
         Name: profits_next_6m, dtype: float64
         

If you take the weighted average of these effects, where the weights are the size of
each group, you end up with an unbiased estimate of the ATE. Here, since the two
groups are of equal size, this is just a simple average, giving you an ATE of 175,000.
Hence, if you are a manager deciding whether to hire consultants and you are presen‐
ted with the preceding data, you can conclude that the impact of consultants on
future profits is about 175k USD. Of course, in order to do that, you have to invoke
the CIA. That is, you have to assume that past performance is the only common cause
of hiring consultants and future performance.

You just went through a whole example of encoding your beliefs about a causal mech‐
anism into a graph and using that graph to find out which variables you needed to
condition on in order to estimate the ATE, even without randomizing the treatment.
Then, you saw what that looked like with some data, where you estimated the ATE,
following the adjustment formula and assuming conditional independence. The tools
used here are fairly general and will inform you of many causal problems to come.
Still, I don’t think we are done yet. Some graphical structures—and the bias they
entail—are much more common than others. It is worth going through them so you
can start to get a feeling for the difficulties that lie ahead in your causal inference
journey.

An Identification Example with Data | 79



Front Door Adjustment
The backdoor adjustment is not the only possible strategy to identify causal effects.
One can leverage the knowledge of causal mechanisms to identify the causal effect via
a front door, even in the presence of unmeasured common causes:

With this strategy, you must be able to identify the effect of the treatment on a media‐
tor and the effect of that mediator on the outcome. Then, the identification of the
effect of treatment on the outcome becomes the combination of those two effects.
However, in the tech industry, it’s hard to find applications where such a graph is
plausible, which is why the front door adjustment is not so popular.

Confounding Bias
The first significant cause of bias is confounding. It’s the bias we’ve been discussing so
far. Now, we are just putting a name to it. Confounding happens when there is an open
backdoor path through which association flows noncausally, usually because the treat‐
ment and the outcome share a common cause. For example, let’s say that you work in
HR and you want to know if your new management training program is increasing
employers’ engagement. However, since the training is optional, you believe only
managers that are already doing great attend the program and those who need it the
most, don’t. When you measure engagement of the teams under the managers that
took the training, it is much higher than that of the teams under the managers who
didn’t attend the training. But it’s hard to know how much of this is causal. Since
there is a common cause between treatment and outcome, they would move together
regardless of a causal effect.

To identify that causal effect, you need to close all backdoor paths between the treat‐
ment and the outcome. If you do so, the only effect that will be left is the direct effect
T Y. In our example, you could somehow control for the manager’s quality prior
to taking the training. In that situation, the difference in the outcome will be only due
to the training, since manager quality prior to the training would be held constant
between treatment and control. Simply put, to adjust for confounding bias, you need to
adjust for the common causes of the treatment and the outcome:

80 | Chapter 3: Graphical Causal Models



Unfortunately, it is not always possible to adjust for all common causes. Sometimes,
there are unknown causes or known causes that you can’t measure. The case of man‐
ager quality is one of them. Despite all the effort, we still haven’t yet figured out how
to measure management quality. If you can’t observe manager quality, then you can’t
condition on it and the effect of training on engagement is not identifiable.

Surrogate Confounding
In some situations, you can’t close all the backdoor paths due to unmeasured con‐
founders. In the following example, once again, manager quality causes managers to
opt in for the training and team’s engagement. So there is confounding in the rela‐
tionship between the treatment (training) and the outcome (team’s engagement). But
in this case, you can’t condition on the confounder, because it is unmeasurable. In
this case, the causal effect of the treatment on the outcome is not identifiable due to
confounder bias. However, you have other measured variables that can act as proxies
for the confounder manager’s quality. Those variables are not in the backdoor path,
but controlling for them will help reduce the bias (even though it won’t eliminate it).
Those variables are sometimes referred to as surrogate confounders.

In this example, you can’t measure manager quality, but you can measure some of its
causes, like the manager’s tenure or level of education; and some of its effects, like the
team’s attrition or performance. Controlling for those surrogate variables is not suffi‐
cient to eliminate bias, but it sure helps:

Confounding Bias | 81



Randomization Revisited
In many important and very relevant research questions, confounders are a major
issue, since you can never be sure that you’ve controlled for all of them. But if you are
planning to use causal inference mostly in the industry, I have good news for you. In
the industry, you are mostly interested in learning the causal effects of things that
your company can control—like prices, customer service, and marketing budget—so
that you can optimize them. In those situations, it is fairly easy to know what the con‐
founders are, because the business usually knows what information it used to allocate
the treatment. Not only that, even when it doesn’t, it’s almost always an option to
intervene on the treatment variable. This is precisely the point of A/B tests. When
you randomize the treatment, you can go from a graph with unobservable confound‐
ers to one where the only cause of the treatment is randomness:

Consequently, besides trying to see what variables you need to condition on in order
to identify the effect, you should also be asking yourself what are the possible inter‐
ventions you could make that would change the graph into one where the causal
quantity of interest is identifiable.

Not all is lost when you have unobserved confounders. In Part IV, I’ll cover methods
that can leverage time structure in the data to deal with unobserved confounders.
Part V will cover the use of instrumental variables for the same purpose.

Sensitivity Analysis and Partial Identification
When you can’t measure all common causes, instead of simply giving up, it is often
much more fruitful to shift the discussion from “Am I measuring all confounders?” to
“How strong should the unmeasured confounders be to change my analysis signifi‐
cantly?” This is the main idea behind sensitivity analysis. For a comprehensible
review on this topic, I suggest you check out the paper “Making Sense of Sensitivity:
Extending Omitted Variable Bias,” by Cinelli and Hazlett.

Additionally, even when the causal quantity you care about can’t be point identified,
you can still use observable data to place bounds around it. This process is called par‐
tial identification and it is an active area of research.

82 | Chapter 3: Graphical Causal Models



Selection Bias
If you think confounding bias was already a sneaky little stone in your causal infer‐
ence shoe, just wait until you hear about selection bias. While confounding bias hap‐
pens when you don’t control for common causes to the treatment and outcome,
selection bias is more related to conditioning on common effects and mediators.

Bias Terminology

There isn’t a consensus in the literature on the names of biases. For
instance, economists tend to refer to all sorts of biases as selection
bias. In contrast, some scientists like to further segment what I’m
calling selection bias into collider bias and mediator bias. I’ll use
the same terminology as in the book Causal Inference: What If, by
Miguel A. Hernán and James M. Robins (Chapman & Hall/CRC).

Conditioning on a Collider
Consider the case where you work for a software company and want to estimate the
impact of a new feature you’ve just implemented. To avoid any sort of confounding
bias, you do a randomized rollout of the feature: 10% of the customers are randomly
chosen to get the new feature, while the rest don’t. You want to know if this feature
made your customer happier and more satisfied. Since satisfaction isn’t directly meas‐
urable, you use Net Promoter Score (NPS) as a proxy for it. To measure NPS, you
send a survey to the customers in the rollout (treated) and in the control groups, ask‐
ing them if they would recommend your product. When the results arrive, you see
that the customers who had the new feature and responded to the NPS survey had
higher NPS scores than the ones that didn’t have the new feature and also responded
to the NPS survey. Can you say that this difference is entirely due to the causal effect
of the new feature on NPS? To answer this question, you should start with the graph
that represents this situation:

Selection Bias | 83



To cut to the chase, sadly, the answer is no. The issue here is that you can only mea‐
sure NPS for those who responded to the NPS survey. You are estimating the differ‐
ence between treated and control while also conditioning on customers who
responded to the NPS survey. Even though randomization allows you to identify the
ATE as the difference in outcome between treated and control, once you condition on
the common effect, you also introduce selection bias. To see this, you can re-create
this graph and delete the causal path from the new feature to customer satisfaction,
which also closes the direct path to NPS. Then, you can check if NPS is still connec‐
ted to the new features, once you condition on the response. You can see that it is,
meaning that association flows between the two variables via a noncausal path, which
is precisely what bias means:

In [13]: nps_model = nx.DiGraph([
            ("RND", "New Feature"),
         #     ("New Feature", "Customer Satisfaction"),
             ("Customer Satisfaction", "NPS"),
             ("Customer Satisfaction", "Response"),
             ("New Feature", "Response"),
         ])

         
         not(nx.d_separated(nps_model, {"NPS"}, {"New Feature"}, {"Response"}))
         

Out[13]: True
         

See Also

Causal identification under selection bias is very sneaky. This
approach of deleting the causal path and checking if the treatment
and outcome are still connected won’t always work with selection
bias. Unfortunately, at the time of this writing, I’m not aware of any
Python libraries that deal with selection-biased graphs. But you can
check DAGitty, which works on your browser and has algorithms
for identification under selection bias.

To develop your intuition about this bias, let’s get your godlike powers back and pre‐
tend you can see into the world of counterfactual outcomes. That is, you can see both
the NPS customers would have under the control, NPS0, and under the treatment,
NPS1, for all customers, even those who didn’t answer the survey. Let’s also simulate
data in such a way that we know the true effect. Here, the new feature increases NPS
by 0.4 (which is a high number for any business standards, but bear with me for the
sake of the example). Let’s also say that both the new feature and customer satisfac‐
tion increases the chance of responding to the NPS survey, just like we’ve shown in

84 | Chapter 3: Graphical Causal Models

http://www.dagitty.net


the previous graph. With the power to measure counterfactuals, this is what you
would see if you aggregated the data by the treated and control groups:

responded nps_0 nps_1 nps

new_feature
0 0.183715 –0.005047 0.395015 –0.005047
1 0.639342 –0.005239 0.401082 0.401082

First, notice that 63% of those with the new feature responded to the NPS survey,
while only 18% of those in the control responded to it. Next, if you look at both
treated and control rows, you’ll see an increase of 0.4 by going from NPS0 to NPS1.
This simply means that the effect of the new feature is 0.4 for both groups. Finally,
notice that the difference in NPS between treated (new_feature=1) and control
(new_feature=0) is about 0.4. Again, if you could see the NPS of those who did not
respond to the NPS survey, you could just compare treated and control groups to get
the true ATE.

Of course, in reality, you can’t see the columns NPS0 and NPS1. You also also can’t see
the NPS column like this, because you only have NPS for those who responded to the
survey (18% of the control rows and 63% of the treated rows):

responded nps_0 nps_1 nps

new_feature
0 0.183715 NaN NaN NaN
1 0.639342 NaN NaN NaN

If you further break down the analysis by respondents, you get to see the NPS of
those where Response = 1. But notice how the difference between treated and control
in that group is no longer 0.4, but only about half of that (0.22). How can that be?
This is all due to selection bias:

nps_0 nps_1 nps

responded new_feature
0 0 NaN NaN NaN

1 NaN NaN NaN
1 0 NaN NaN 0.314073

1 NaN NaN 0.536106

Selection Bias | 85



Adding back the unobservable quantities, you can see what is going on (focus on the
respondents group here):

nps_0 nps_1 nps

responded new_feature
0 0 –0.076869 0.320616 –0.076869

1 –0.234852 0.161725 0.161725
1 0 0.314073 0.725585 0.314073

1 0.124287 0.536106 0.536106

Initially, treated and control groups were comparable, in terms of their baseline satis‐
faction Y0. But once you condition on those who responded the survey, the treatment
group has lower baseline satisfaction E Y0 T = 0, R = 1 > E Y0 T = 1, R = 1 . This
means that a simple difference in averages between treated and control does not iden‐
tify the ATE, once you condition on those who responded:

E Y T = 1, R = 1 − E Y T = 1, R = 1 = E Y1 − Y0 R = 1
ATE

+E Y0 T = 0, R = 1 − E Y0 T = 1, R = 1
SelectionBias

That bias term won’t be zero if the outcome, customer satisfaction, affects the
response rate. Since satisfied customers are more likely to answer the NPS survey,
identification is impossible in this situation. If the treatment increases satisfaction,
then the control group will contain more customers whose baseline satisfaction is
higher than the treatment group. That’s because the treated group will have those who
were satisfied (high baseline satisfaction) plus those who had low baseline satisfac‐
tion, but due to the treatment, became more satisfied and answered the survey.

See Also

Selection bias is a much more complex topic than I can give it jus‐
tice in this chapter. For instance, you can have selection bias simply
by conditioning on an effect of the outcome, even if that effect isn’t
shared with the treatment. This situation is called a virtual collider. 
To learn more about it and much more, I strongly recommend you
check out the paper “A Crash Course in Good and Bad Controls,”
by Carlos Cinelli et al. It goes through everything covered in this
chapter and more. The paper is also written in clear language, mak‐
ing it easy to read.

86 | Chapter 3: Graphical Causal Models



Adjusting for Selection Bias
Unfortunately, correcting selection bias is not at all trivial. In the example we’ve been
discussing, even with a randomized control trial, the ATE is not identifiable, simply
because you can’t close the noncausal flow of association between the new feature and
customer satisfaction, once you condition on those who responded to the survey. To
make some progress, you need to make further assumptions, and here is where the
graphical model starts to shine. It allows you to be very explicit and transparent about
those assumptions.

For instance, you need to assume that the outcome doesn’t cause selection. In our
example, this would mean that customer satisfaction doesn’t cause customers to be
more or less likely to answer the survey. Instead, you would have some other observa‐
ble variable (or variables) that cause both selection and the outcome. For example, it
could be that the only thing that causes customers to respond to the survey is the time
they spend in the app and the new feature. In this case, the noncausal association
between treatment and control flows through time in the app:

Only expert knowledge will be able to tell how strong of an assumption that is. But if
it is correct, the effect of the new feature on satisfaction becomes identifiable once
you control for time in the app.

Once again, you are applying the adjustment formula here. You are simply segment‐
ing the data into groups defined by X so that treated and control groups become
comparable within those segments. Then, you can just compute the weighted average
of the in-group comparison between treated and control, using the size of each group
as the weights. Only now, you are doing all of this while also conditioning on the
selection variable:

ATE = ∑
x

E Y T = 1, R = 1, X − E Y T = 0, R = 1, X P X R = 1

Generally speaking, to adjust for selection bias, you have to adjust for whatever causes
selection and you also have to assume that neither the outcome nor the treatment
causes selection directly or shares a hidden common cause with selection. For

Selection Bias | 87



instance, in the following graph, you have selection bias since conditioning on S
opens a noncausal association path between T and Y:

You can close two of these paths by adjusting for measurable variables that explain
selection, X3, X4, and X5. However, there are two paths you cannot close (shown in
dashed lines): Y S T and T S U Y. That’s because the treatment causes
selection directly and the outcome shares a hidden common cause with selection. You
can mitigate the bias from this last path by further conditioning on X2 and X1, as
they account for some variation in U, but that will not eliminate the bias completely.

This graph reflects a more plausible situation you will encounter when it comes to
selection bias, like the response bias we’ve just used as an example. In these situations,
the best you can do is to condition on variables that explain the selection. This will
reduce the bias, but it won’t eliminate it because, as you saw, 1) there are things that
cause selection that you don’t know or can’t measure, and 2) the outcome or the treat‐
ment might cause selection directly.

PRACTICAL EXAMPLE

The Hidden Bias in Survival Analysis
Survival analysis appears in many business applications that involve duration or time
to an event. For instance, a bank is very interested in understanding how the size of a
loan (loan amount) increases the chance of a customer defaulting on that loan. Con‐
sider a 3-year loan. The customer can default in the first, second, or third year, or they
could not default at all. The goal of the bank is to know how loan amount impacts
P Default yr = 1 , P Default yr = 2 , and P Default yr = 3 . Here, for simplicity’s
sake, consider that the bank has randomized the loan amount. Notice how only cus‐
tomers who survived (did not default) in year 1 are observed in year 2 and only cus‐
tomers who survived years 1 and 2 are observed in year 3. This selection makes it so
that only the effect of loan size in the first year is identifiable.

88 | Chapter 3: Graphical Causal Models



Intuitively, even if the loan amount was randomized, it only stays that way in the first
year. After that, if the loan amount increases the chance of default, customers with
lower risk of defaulting will be overrepresented in the region with high loan amounts.
Their risk will have to be low enough to offset the increase caused by a bigger loan
amount; otherwise, they would have defaulted at year 1. If the bias is too extreme, it
can even look like bigger loans cause risk to decrease in a year after year 1, which
doesn’t make any sense.

A simple solution for this selection bias problem is to focus on cumulative outcome
(survival), Y time > t, rather than yearly outcomes (hazard rates), Y time = t. For
example, even though you can’t identify the effect of loan amount on default at year 2,
P Default yr = 2 , you can easily identify the effect on default up to year 2,
P Default yr ≤ 2 :

I also don’t want to give you the false idea that just controlling for everything that
causes selection is a good idea. In the following graph, conditioning on X opens a
noncausal path, Y X T:

Conditioning on a Mediator
While the selection bias discussed so far is caused by unavoidable selection into a
population (you were forced to condition on the respondent population), you can
also cause selection bias inadvertently. For instance, let’s suppose you are working in
HR and you want to find out if there is gender discrimination; that is, if equally quali‐
fied men and women are paid differently. To do that analysis, you might consider
controlling for seniority level; after all, you want to compare employees who are
equally qualified, and seniority seems like a good proxy for that. In other words, you
think that if men and women in the same position have different salaries, you will
have evidence of a gender pay gap in your company.

Selection Bias | 89



The issue with this analysis is that the causal diagram probably looks something like
this:

The seniority level is a mediator in the path between the treatment (woman) and sal‐
ary. Intuitively, the difference in salary between women and men has a direct cause
(the direct path, woman salary) and an indirect cause, which flows through the
seniority (the indirect path woman seniority salary). What this graph tells you
is that one way women can suffer from discrimination is by being less likely to be
promoted to higher seniorities. The difference in salary between men and women is
partly the difference in salary at the same seniority level, but also the difference in
seniority. Simply put, the path woman seniority salary is also a causal path
between the treatment and the outcome, and you shouldn’t close it in your analysis. If
you compare salaries between men and women while controlling for seniority, you
will only identify the direct discrimination, woman salary.

It is also worth mentioning that conditioning on descendants of the mediator node
also induces bias. This sort of selection doesn’t completely shut the causal path, but it
partially blocks it:

Key Ideas
In this chapter, you focused mostly on the identification part of causal inference. The
goal was to learn how to use graphical models to be transparent about the assump‐
tions you are making and to see what kind of association—causal or not—those
assumptions entail. To do that, you had to learn how association flows in a graph.
This cheat sheet is a good summary of those structures, so I recommend you keep it
close by:

90 | Chapter 3: Graphical Causal Models



Then, you saw that identification amounts to isolating the causal flow of association
from the noncausal ones in a graph. You could close noncausal paths of association by
adjusting (conditioning) on some variables or even intervening on a graph, like in the
case where you do a randomized experiment. Bayesian network software, like
networkx, is particularly useful here, as it aids you when checking if two nodes are
connected in a graph. For instance, to check for confounder bias, you can simply
remove the causal path in a graph and check if the treatment and outcome nodes are
still connected, even with that path removed. If they are, you have a backdoor path
that needs to be closed.

Finally, you went through two very common structures of bias in causal problems.
Confounding bias happens when the treatment and the outcome share a common
cause. This common cause forms a fork structure, which creates a noncausal associa‐
tion flow between the treatment and the outcome:

To fix confounding bias, you need to try to adjust for the common causes, directly or
by the means of proxy variables. This motivated the idea of the adjustment formula:

ATE = ∑
x

E Y T = 1, X = x − E Y T = 0, X = x P X = x ,

Key Ideas | 91



and the conditional independence assumption, which states that, if treatment is as
good as randomly assigned within groups of variables X, then you can identify causal
quantities by conditioning on X.

Alternatively, if you can intervene on the treatment node, confounding becomes a lot
easier to deal with. For instance, if you design a random experiment, you’ll create a
new graph where the arrows pointing to the treatment are all deleted, which effec‐
tively annihilates confounding bias.

You also learned about selection bias, which appears when you condition on a com‐
mon effect (or descendant of a common effect) between the treatment and the out‐
come or when you condition on a mediator node (or a descendant of a mediator
node). Selection bias is incredibly dangerous because it does not go away with experi‐
mentation. To make it even worse, it can be quite counterintuitive and hard to spot:

Again, it is worth mentioning that understanding a causal graph is like learning a new
language. You’ll learn most of it by seeing it again and again and by trying to use it.

92 | Chapter 3: Graphical Causal Models



PART II

Adjusting for Bias





CHAPTER 4

The Unreasonable Effectiveness
of Linear Regression

In this chapter you’ll add the first major debiasing technique in your causal inference
arsenal: linear regression or ordinary least squares (OLS) and orthogonalization.
You’ll see how linear regression can adjust for confounders when estimating the rela‐
tionship between a treatment and an outcome. But, more than that, I hope to equip
you with the powerful concept of treatment orthogonalization. This idea, born in lin‐
ear regression, will come in handy later on when you start to use machine learning
models for causal inference.

All You Need Is Linear Regression
Before you skip to the next chapter because “oh, regression is so easy! It’s the first
model I learned as a data scientist” and yada yada, let me assure you that no, you
actually don’t know linear regression. In fact, regression is one of the most fascinat‐
ing, powerful, and dangerous models in causal inference. Sure, it’s more than one
hundred years old. But, to this day, it frequently catches even the best causal inference
researchers off guard.

OLS Research

Don’t believe me? Just take a look at some recently published
papers on the topic and you’ll see. A good place to start is the arti‐
cle “Difference-in-Differences with Variation in Treatment Tim‐
ing,” by Andrew Goodman-Bacon, or the paper “Interpreting OLS
Estimands When Treatment Effects Are Heterogeneous” by Tymon
Słoczyński, or even the paper “Contamination Bias in Linear
Regressions” by Goldsmith-Pinkham et al.

95



I assure you: not only is regression the workhorse for causal inference, but it will be
the one you’ll use the most. Regression is also a major building block for more
advanced techniques, like most of the panel data methods (difference-in-differences
and two-way fixed effects), machine learning methods (Double/Debiased Machine
Learning), and alternative identification techniques (instrumental variables or dis‐
continuity design).

Why We Need Models
Now that I hopefully convinced you to stay, we can get down to business. To motivate
the use of regression, let’s consider a pretty challenging problem in banking and the
lending industry in general: understanding the impact of loan amount or credit card
limits on default rate. Naturally, increasing someone’s credit card limit will increase
(or at least not decrease) the odds of them defaulting on the credit card bill. But, if
you look at any banking data, you will see a negative correlation between credit lines
and default rate. Obviously, this doesn’t mean that higher lines cause customers to
default less. Rather, it simply reflects the treatment assignment mechanism: banks
and lending companies offer more credit to customers who have a lower chance of
defaulting, as perceived by their underwriting models. The negative correlation you
see is the effect of confounding bias:

Of course the bank doesn’t know the inherent risk of default, but it can use proxy
variables X—like income or credit scores—to estimate it. In the previous chapters,
you saw how you could adjust for variables to make the treatment look as good as
randomly assigned. Specifically, you saw how the adjustment formula:

ATE = Ex E Y T = 1, X = x − E Y T = 0, X = x ,

which, together with the conditional independence assumption, Y0, Y1 ⊥ T X,
allows you to identify the causal effect.

However, if you were to literally apply the adjustment formula, things can get out of
hand pretty quickly. First, you would need to partition your data into segments
defined by the feature X. This would be fine if you had very few discrete features. But
what if there are many of them, with some being continuous? For example, let’s say
you know the bank used 10 variables, each with 3 groups, to underwrite customers
and assign credit lines. That doesn’t seem a lot, right? Well, it will already amount to

96 | Chapter 4: The Unreasonable Effectiveness of Linear Regression



59,049, or 310, cells. Estimating the ATE in each of those cells and averaging the result
is only possible if you have massive amounts of data. This is the curse of dimensional‐
ity, a problem very familiar to most data scientists. In the context of causal inference,
one implication of this curse is that a naive application of the adjustment formula will
suffer from data sparsity if you have lots of covariates.

Causal Inference Versus Machine Learning Lingo
The literature on machine learning, which is what most data scientists are familiar
with, uses different terms from the literature on causal inference, which usually
comes from econometrics or epidemiology. So, in the event that you need to translate
from one to the other, here are some of the main equivalences you will encounter:

Feature
Covariates or independent variables

Weights
Parameters or coefficients

Target
Outcome or dependent variable

One way out of this dimensionality problem is to assume that the potential outcome
can be modeled by something like linear regression, which can interpolate and extrapo‐
late the many individual X defined cells. You can think about linear regression in this
context as a dimensionality reduction algorithm. It projects all the X variables into
the outcome dimension and makes the comparison between treatment and control
on that projection. It’s quite elegant. But I’m getting ahead of myself. To really (and I
mean truly, with every fiber of your heart) understand regression, you have to start
small: regression in the context of an A/B test.

Regression in A/B Tests
Pretend you work for an online streaming company, perfecting its recommender sys‐
tem. Your team just finished a new version of this system, with cutting-edge technol‐
ogy and the latest ideas from the machine learning community. While that’s all very
impressive, what your manager really cares about is if this new system will increase
the watch time of the streaming service. To test that, you decide to do an A/B test.
First, you sample a representative but small fraction of your customer base. Then, you
deploy the new recommender to a random 1/3 of that sample, while the rest continue
to have the old version of the recommender. After a month, you collect the results in
terms of average watch time per day:

All You Need Is Linear Regression | 97



In [1]: import pandas as pd
        import numpy as np

        data = pd.read_csv("./data/rec_ab_test.csv")
        data.head()
        

recommender age tenure watch_time
0 challenger 15 1 2.39
1 challenger 27 1 2.32
2 benchmark 17 0 2.74
3 benchmark 34 1 1.92
4 benchmark 14 1 2.47

Since the version of recommender was randomized, a simple comparison of average
watch time between versions would already give you the ATE. But then you had to go
through all the hassle of computing standard errors to get confidence intervals in
order to check for statistical significance. So, what if I told you that you can interpret
the results of an A/B test with regression, which will give you, for free, all the infer‐
ence statistics you need? The idea behind regression is that you’ll estimate the follow‐
ing equation or model:

WatchTimei = β0 + β1challengeri + ei

Where challenger is 1 for customers in the group that got the new version of the rec‐
ommender and zero otherwise. If you estimate this model, the impact of the chal‐
lenger version will be captured by the estimate of β1, β1.

To run that regression model in Python, you can use statsmodels’ formula API. It
allows you to express linear models succinctly, using R-style formulas. For example,
you can represent the preceding model with the formula 'watch_time ~ C(recommen
der)'. To estimate the model, just call the method .fit() and to read the results,
call .summary() on a previously fitted model:

In [2]: import statsmodels.formula.api as smf

        result = smf.ols('watch_time ~ C(recommender)', data=data).fit()

        result.summary().tables[1]
        

coef std err t P>|t| [0.025 0.975]
Intercept 2.0491 0.058 35.367 0.000 1.935 2.163
C(recommender)[T.challenger] 0.1427 0.095 1.501 0.134 –0.044 0.330

98 | Chapter 4: The Unreasonable Effectiveness of Linear Regression



In that R-style formula, the outcome variable comes first, followed by a ~. Then, you
add the explanatory variables. In this case, you’ll just use the recommender variable,
which is categorical with two categories (one for the challenger and one for the old
version). You can wrap that variable in C(...) to explicitly state that the column is
categorical.

Patsy

The formula syntactic sugar is an incredibly convenient way to do
feature engineering. You can learn more about it in the patsy
library.

Next, look at the results. First, you have the intercept. This is the estimate for the β0
parameter in your model. It tells you the expected value of the outcome when the
other variables in the model are zero. Since the only other variable here is the chal‐
lenger indicator, you can interpret the intercept as the expected watch time for those
who received the old version of the recommender system. Here, it means that cus‐
tomers spend, on average, 2.04 hours per day watching your streaming content, when
with the old version of the recommender system. Finally, looking at the parameter
estimate associated with the challenger recommender, β1, you can see the increase in
watch time due to this new version. If β0 is the estimate for the watch time under the
old recommender, β0 + β1 tells you the expected watch time for those who got the
challenger version. In other words, β1 is an estimate for the ATE. Due to randomiza‐
tion, you can assign causal meaning to that estimate: you can say that the new recom‐
mender system increased watch time by 0.14 hours per day, on average. However, that
result is not statistically significant.

Forget the nonsignificant result for a moment, because what you just did was quite
amazing. Not only did you estimate the ATE, but also got, for free, confidence inter‐
vals and p-values out of it! More than that, you can see for yourself that regression is
doing exactly what it supposed to do—estimating E Y T  for each treatment:

In [3]: (data
         .groupby("recommender")
         ["watch_time"]
         .mean())
        

Out[3]: recommender
        benchmark     2.049064
        challenger    2.191750
        Name: watch_time, dtype: float64
        

All You Need Is Linear Regression | 99

https://oreil.ly/YuQG_
https://oreil.ly/YuQG_


Just like I’ve said, the intercept is mathematically equivalent to the average watch time
for those in the control—the old version of the recommender.

These numbers are identical because, in this case, regression is mathematically equiv‐
alent to simply doing a comparison between averages. This also means that β1 is the
average difference between the two groups: 2.191 − 2.049 = 0.1427. OK, so you man‐
aged to, quite literally, reproduce group averages with regressions. But so what? It’s
not like you couldn’t do this earlier, so what is the real gain here?

Adjusting with Regression
To appreciate the power of regression, let me take you back to the initial example:
estimating the effect of credit lines on default. Bank data usually looks something like
this, with a bunch of columns of customer features that might indicate credit worthi‐
ness, like monthly wage, lots of credit scores provided by credit bureaus, tenure at
current company and so on. Then, there is the credit line given to that customer (the
treatment in this case) and the column that tells you if a customer defaulted or not—
the outcome variable:

In [4]: risk_data = pd.read_csv("./data/risk_data.csv")

        risk_data.head()
        

wage educ exper married credit_score1 credit_score2 credit_limit default
0 950.0 11 16 1 500.0 518.0 3200.0 0
1 780.0 11 7 1 414.0 429.0 1700.0 0
2 1230.0 14 9 1 586.0 571.0 4200.0 0
3 1040.0 15 8 1 379.0 411.0 1500.0 0
4 1000.0 16 1 1 379.0 518.0 1800.0 0

Simulated Data

Once again, I’m building from real-world data and changing it to
fit the needs of this chapter. This time, I’m using the wage1 data,
curated by professor Jeffrey M. Wooldridge and available in the
“wooldridge” R package.

Here, the treatment, credit_limit, has way too many categories. In this situation, it
is better to treat it as a continuous variable, rather than a categorical one. Instead of
representing the ATE as the difference between multiple levels of the treatment, you
can represent it as the derivative of the expected outcome with respect to the
treatment:

100 | Chapter 4: The Unreasonable Effectiveness of Linear Regression



ATE = ∂
∂t E y t

Don’t worry if this sounds fancy. It simply means the amount you expect the outcome
to change given a unit increase in the treatment. In this example, it represents how
much you expect the default rate to change given a 1 USD increase in credit lines.

One way to estimate such a quantity is to run a regression. Specifically, you can esti‐
mate the model:

Defaulti = β0 + β1limiti + ei,

and the estimate β1 can be interpreted as the amount you expect risk to change given
a 1 USD increase in limit. This parameter has a causal interpretation if the limit was
randomized. But as you know very well that is not the case, as banks tend to give
higher lines to customers who are less risky. In fact, if you run the preceding model,
you’ll get a negative estimate for β1:

In [5]: model = smf.ols('default ~ credit_limit', data=risk_data).fit()
        model.summary().tables[1]
        

coef std err t P>|t| [0.025 0.975]

Intercept 0.2192 0.004 59.715 0.000 0.212 0.226

credit_limit –2.402e–05 1.16e–06 –20.689 0.000 –2.63e–05 –2.17e–05

That is not at all surprising, given the fact that the relationship between risk and
credit limit is negative, due to confounding. If you plot the fitted regression line
alongside the average default by credit limit, you can clearly see the negative trend:

All You Need Is Linear Regression | 101



To adjust for this bias, you could, in theory, segment your data by all the confounders,
run a regression of default on credit lines inside each segment, extract the slope
parameter, and average the results. However, due to the curse of dimensionality, even
if you try to do that for a moderate number of confounders—both credit scores—you
will see that there are cells with only one sample, making it impossible for you to run
your regression. Not to mention the many cells that are simply empty:

In [6]: risk_data.groupby(["credit_score1", "credit_score2"]).size().head()
        

Out[6]: credit_score1  credit_score2
        34.0           339.0            1
                       500.0            1
        52.0           518.0            1
        69.0           214.0            1
                       357.0            1
        dtype: int64
        

Thankfully, once more, regression comes to your aid here. Instead of manually
adjusting for the confounders, you can simply add them to the model you’ll estimate
with OLS:

Defaulti = β0 + β1limiti + θXi + ei,

Here, � is a vector of confounder variables and θ is the vector of parameters associ‐
ated with those confounders. There is nothing special about θ parameters. They
behave exactly like β1. I’m representing them differently because they are just there to
help you get an unbiased estimate for β1. That is, you don’t really care about their
causal interpretation (they are technically called nuisance parameters).

In the credit example, you could add the credit scores and wage confounders to the
model. It would look like this:

Defaulti = β0 + β1limiti + θ1wagei + θ2creditScore1i + θ3creditScore2i + ei,

I’ll get into more details about how including variables in the model will adjust for
confounders, but there is a very easy way to see it right now. The preceding model is a
model for E y t, X . Recall that you want ∂

∂t E y t, X . So what happens if you differ‐
entiate the model with respect to the treatment—credit limit? Well, you simply get β1!
In a sense, β1 can be seen as the partial derivative of the expected value of default with
respect to credit limit. Or, more intuitively, it can be viewed as how much you should
expect default to change, given a small increase in credit limit, while holding fixed all
other variables in the model. This interpretation already tells you a bit of how

102 | Chapter 4: The Unreasonable Effectiveness of Linear Regression



regression adjusts for confounders: it holds them fixed while estimating the relation‐
ship between the treatment and the outcome.

To see this in action, you can estimate the preceding model. Just add some confound‐
ers and, like some kind of magic, the relationship between credit lines and default
becomes positive!

In [7]: formula = 'default ~ credit_limit + wage+credit_score1+credit_score2'
        model = smf.ols(formula, data=risk_data).fit()
        model.summary().tables[1]
        

coef std err t P>|t| [0.025 0.975]
Intercept 0.4037 0.009 46.939 0.000 0.387 0.421
credit_limit 3.063e–06 1.54e–06 1.987 0.047 4.16e–08 6.08e–06
wage –8.822e-05 6.07e–06 –14.541 0.000 –0.000 –7.63e–05
credit_score1 –4.175e–05 1.83e–05 –2.278 0.023 –7.77e–05 –5.82e–06
credit_score2 –0.0003 1.52e–05 –20.055 0.000 –0.000 –0.000

Don’t let the small estimate of β1 fool you. Recall that limit is in the scales of 1,000s
while default is either 0 or 1. So it is no surprise that increasing lines by 1 USD will
increase expected default by a very small number. Still, that number is statistically sig‐
nificant and tells you that risk increases as you increase credit limit, which is much
more in line with your intuition on how the world works.

Hold that thought because you are about to explore it more formally. It’s finally time
to learn one of the greatest causal inference tools of all: the Frisch-Waugh-Lovell
(FWL) theorem. It’s an incredible way to get rid of bias, which is unfortunately sel‐
dom known by data scientists. FWL is a prerequisite to understand more advanced
debiasing methods, but the reason I find it most useful is that it can be used as a
debiasing pre-processing step. To stick to the same banking example, imagine that
many data scientists and analysts in this bank are trying to understand how credit
limit impacts (causes) lots of different business metrics, not just risk. However, only
you have the context about how the credit limit was assigned, which means you are
the only expert who knows what sort of biases plague the credit limit treatment. With
FWL, you can use that knowledge to debias the credit limit data in a way that it can
be used by everyone else, regardless of what outcome variable they are interested in.
The Frisch-Waugh-Lovell theorem allows you to separate the debiasing step from the
impact estimation step. But in order to learn it, you must first quickly review a bit of
regression theory.

All You Need Is Linear Regression | 103



Regression Theory
I don’t intend to dive too deep into how linear regression is constructed and estima‐
ted. However, a little bit of theory will go a long way in explaining its power in causal
inference. First of all, regression solves the best linear prediction problem. Let β* be a
vector of parameters:

β* = argmin
β

E Yi − Xi′β
2

Linear regression finds the parameters that minimize the mean squared error (MSE).
If you differentiate it and set it to zero, you will find that the linear solution to this
problem is given by:

β* = E X′X −1E X′Y

You can estimate this beta using the sample equivalent:

β = X′X −1X′Y

But don’t take my word for it. If you are one of those who understand code better
than formulas, try for yourself. In the following code, I’m using the algebraic solution
to OLS to estimate the parameters of the model you just saw (I’m adding the intercept
as the final variables, so the first parameter estimate will be β1):

In [8]: X_cols = ["credit_limit", "wage", "credit_score1", "credit_score2"]
        X = risk_data[X_cols].assign(intercep=1)
        y = risk_data["default"]

        def regress(y, X): 
            return np.linalg.inv(X.T.dot(X)).dot(X.T.dot(y))

        beta = regress(y, X)
        beta
        

Out[8]: array([ 3.062e-06, -8.821e-05, -4.174e-05, -3.039e-04, 4.0364-01])
        

If you look back a bit, you will see that these are the exact same numbers you got ear‐
lier, when estimating the model with the ols function from statsmodels.

104 | Chapter 4: The Unreasonable Effectiveness of Linear Regression



Assign

I tend to use the method .assign() from pandas quite a lot. If you
are not familiar with it, it just returns a new data frame with the
newly created columns passed to the method:

new_df = df.assign(new_col_1 = 1,
                   new_col_2 = df["old_col"] + 1)

new_df[["old_col", "new_col_1", "new_col_2"]].head()

   old_col  new_col_1  new_col_2
0        4          1          5
1        9          1         10
2        8          1          9
3        0          1          1
4        6          1          7

Single Variable Linear Regression
The β formula from the previous section is pretty general. However, it pays off to
study the case where you only have one regressor. In causal inference, you often want
to estimate the causal impact of a variable T on an outcome y. So, you use regression
with this single variable to estimate this effect.

With a single regressor variable T, the parameter associated to it will be given by:

τ =
Cov Yi, Ti

Var Ti
=

E Ti − T Yi − Y

E Ti − T 2

If T is randomly assigned, β1 is the ATE. Importantly, with this simple formula, you
can see what regression is doing. It’s finding out how the treatment and outcome
move together (as expressed by the covariance in the numerator) and scaling this by
units of the treatment, which is achieved by dividing by the variance of the treatment.

You can also tie this to the general formula. Covariance is inti‐
mately related to dot products, so you can pretty much say that X′X
takes the role of the denominator in the covariance/variance for‐
mula, while X′y takes the role of the numerator.

Multivariate Linear Regression
Turns out there is another way to see multivariate linear regression, beyond the gen‐
eral formula you saw earlier. This other way sheds some light into what regression is
doing.

Regression Theory | 105



If you have more than one regressor, you can extend the one variable regression for‐
mula to accommodate that. Let’s say those other variables are just auxiliary and that
you are truly interested in estimating the parameter τ associated to T:

yi = β0 + τTi + β1X1i + . . . + βkXki + ui

τ can be estimated with the following formula:

τ =
Cov Y i, Ti

Var Ti

where Ti is the residual from a regression of Ti on all of the other covariates
X1i + . . . + Xki.

Now, let’s appreciate how cool this is. It means that the coefficient of a multivariate
regression is the bivariate coefficient of the same regressor after accounting for the
effect of other variables in the model. In causal inference terms, τ is the bivariate coeffi‐
cient of T after having used all other variables to predict it.

This has a nice intuition behind it. If you can predict T using other variables, it
means it’s not random. However, you can make T look as good as random once you
control for the all the confounder variables X. To do so, you can use linear regression
to predict it from the confounder and then take the residuals of that regression T. By
definition, T cannot be predicted by the other variables X that you’ve already used to
predict T. Quite elegantly, T is a version of the treatment that is not associated
(uncorrelated) with any other variable in X.

I know this is a mouthful, but it is just amazing. In fact, it is already the work of the
FWL theorem that I promised to teach you. So don’t worry if you didn’t quite get this
multivariate regression part, as you are about to review it in a much more intuitive
and visual way.

Frisch-Waugh-Lovell Theorem and Orthogonalization
FWL-style orthogonalization is the first major debiasing technique you have at your
disposal. It’s a simple yet powerful way to make nonexperimental data look as if the
treatment has been randomized. FWL is mostly about linear regression; FWL-style
orthogonalization has been expanded to work in more general contexts, as you’ll see
in Part III. The Frisch-Waugh-Lovell theorem states that a multivariate linear regres‐
sion model can be estimated all at once or in three separate steps. For example, you
can regress default on credit_limit, wage, credit_score1, credit_score2, just
like you already did:

106 | Chapter 4: The Unreasonable Effectiveness of Linear Regression



In [9]: formula = 'default ~ credit_limit + wage+credit_score1+credit_score2'
        model = smf.ols(formula, data=risk_data).fit()
        model.summary().tables[1]
        

coef std err t P>|t| [0.025 0.975]
Intercept 0.4037 0.009 46.939 0.000 0.387 0.421
credit_limit 3.063e–06 1.54e–06 1.987 0.047 4.16e–08 6.08e–06
wage –8.822e–05 6.07e–06 –14.541 0.000 –0.000 –7.63e–05
credit_score1 –4.175e–05 1.83e–05 –2.278 0.023 -–7.77e–05 -5.82e–06
credit_score2 –0.0003 1.52e–05 –20.055 0.000 –0.000 –0.000

But, according to FWL, you can also break down this estimation into:

1. A debiasing step, where you regress the treatment T on confounders X and
obtain the treatment residuals T = T − T

2. A denoising step, where you regress the outcome Y on the confounder variables
X and obtain the outcome residuals Y = Y − Y

3. An outcome model where you regress the outcome residual Y on the treatment
residual T to obtain an estimate for the causal effect of T on Y

Not surprisingly, this is just a restatement of the formula you just saw in “Multivariate
Linear Regression” on page 105. The FWL theorem states an equivalence in estima‐
tion procedures with regression models. It also says that you can isolate the debiasing
component of linear regression, which is the first step outlined in the preceding list.

To get a better intuition on what is going on, let’s break it down step by step.

Debiasing Step
Recall that, initially, due to confounding bias, your data looked something like this,
with default trending downward with credit line:

Frisch-Waugh-Lovell Theorem and Orthogonalization | 107



According to the FWL theorem, you can debias this data by fitting a regression model
to predict the treatment—the credit limit—from the confounders. Then, you can take
the residual from this model: linei = linei − linei. This residual can be viewed as a ver‐
sion of the treatment that is uncorrelated with the variables used in the debiasing
model. That’s because, by definition, the residual is orthogonal to the variables that
generated the predictions.

This process will make line centered around zero. Optionally, you can add back the
average treatment, line:

linei = linei − linei + line

This is not necessary for debiasing, but it puts line in the same range as the original
line, which is better for visualization purposes:

In [10]: debiasing_model = smf.ols(
             'credit_limit ~ wage + credit_score1  + credit_score2',
             data=risk_data
         ).fit()

         risk_data_deb = risk_data.assign(
             # for visualization, avg(T) is added to the residuals
             credit_limit_res=(debiasing_model.resid 
                               + risk_data["credit_limit"].mean())
         )
         

If you now run a simple linear regression, where you regress the outcome, risk, on the
debiased or residualized version of the treatment, line, you’ll already get the effect of
credit limit on risk while controlling for the confounders used in the debiasing
model. The parameter estimate you get for β1 here is exactly the same as the one you
got earlier by running the complete model, where you’ve included both treatment and
confounders:

In [11]: model_w_deb_data = smf.ols('default ~ credit_limit_res',
                                    data=risk_data_deb).fit()

         model_w_deb_data.summary().tables[1]
         

coef std err t P>|t| [0.025 0.975]
Intercept 0.1421 0.005 30.001 0.000 0.133 0.151
credit_limit_res 3.063e-06 1.56e–06 1.957 0.050 –4.29e–09 6.13e–06

108 | Chapter 4: The Unreasonable Effectiveness of Linear Regression



Alternative Coefficient Formula
The fact that you only need to residualize the treatment suggests a simpler way of
rewriting the regression coefficient formula. In the single variable case, instead of
using the covariance of Y and T over the variance of T, you can use

β1 =
E Ti − T yi

E Ti − T 2 .

In the multivariate case, this would be

β1 =
E Ti − E T X yi

E Var T X .

There is a difference, though. Look at the p-value. It is a bit higher than what you got
earlier. That’s because you are not applying the denoising step, which is responsible
for reducing variance. Still, with only the debiasing step, you can already get the
unbiased estimate of the causal impact of credit limit on risk, given that all the con‐
founders were included in the debiasing model.

You can also visualize what is going on by plotting the debiased version of credit limit
against default rate. You’ll see that the relationship is no longer downward sloping, as
when the data was biased:

Denoising Step
While the debiasing step is crucial to estimate the correct causal effect, the denoising
step is also nice to have, although not as important. It won’t change the value of your
treatment effect estimate, but it will reduce its variance. In this step, you’ll regress the

Frisch-Waugh-Lovell Theorem and Orthogonalization | 109



outcome on the covariates that are not the treatment. Then, you’ll get the residual for
the outcome defaulti = defaulti − defaulti.

Once again, for better visualization, you can add the average default rate to the
denoised default variable for better visualization purposes:

defaulti = defaulti − defaulti + default

In [12]: denoising_model = smf.ols(
             'default ~ wage + credit_score1  + credit_score2',
             data=risk_data_deb
         ).fit()

         risk_data_denoise = risk_data_deb.assign(
             default_res=denoising_model.resid + risk_data_deb["default"].mean()
         )
         

Standard Error of the Regression Estimator
Since we are talking about noise, I think it is a good time to see how to compute the
regression standard error. The SE of the regression parameter estimate is given by the
following formula:

SE β = σ �
σ T n − DF

,

where �  is the residual from the regression model and DF is the model’s degree of
freedom (number of parameters estimated by the model). If you prefer to see this in
code, here it is:

In [13]: model_se = smf.ols(
        'default ~ wage + credit_score1  + credit_score2',
        data=risk_data
    ).fit()

    print("SE regression:", model_se.bse["wage"])

    
    model_wage_aux = smf.ols(
        'wage ~ credit_score1 + credit_score2',
        data=risk_data
    ).fit()

    # subtract the degrees of freedom - 4 model parameters - from N.
    se_formula = (np.std(model_se.resid)
               /(np.std(model_wage_aux.resid)*np.sqrt(len(risk_data)-4)))

110 | Chapter 4: The Unreasonable Effectiveness of Linear Regression



    print("SE formula:   ", se_formula)
    

Out[13]: SE regression: 5.364242347548197e-06
         SE formula:    5.364242347548201e-06
         

This formula is nice because it gives you further intuition about regression in general
and the denoising step in particular. First, the numerator tells you that the better you
can predict the outcome, the smaller the residuals will be and, hence, the lower the
variance of the estimate. This is very much what the denoising step is all about. It also
tells you that if the treatment explains the outcome a lot, its parameter estimate will
also have a smaller standard error.

Interestingly, the error is also inversely proportional to the variance of the (residual‐
ized) treatment. This is also intuitive. If the treatment varies a lot, it will be easier to
measure its impact. You’ll learn more about this in “Noise Inducing Control” on page
136.

Experiments with Continuous Treatments
The standard error formula can also be useful if you plan to design an experiment
where you care to measure the effect as the parameter estimate from a regression.
This is a good idea if the treatment you want to randomize is continuous. In this case,
the standard error formula can be approximated by:

SE ≈ σ y
σ T n − 2

This approximation is conservative in the case of a single variable regression model,
since σ y ≥ σ e , because the treatment might explain a bit of the outcome. Then,
you can take this standard error and plug in the sample size calculation formula from
Chapter 2. Importantly, designing this test has the additional complexity of choosing
a sampling distribution from T, which can also affect the standard error via σ T .

Final Outcome Model
With both residuals, Y and T, you can run the final step outlined by the FWL theo‐
rem—just regress Y on T:

In [14]: model_w_orthogonal = smf.ols('default_res ~ credit_limit_res',
                                      data=risk_data_denoise).fit()

         model_w_orthogonal.summary().tables[1]
         

Frisch-Waugh-Lovell Theorem and Orthogonalization | 111



coef std err t P>|t| [0.025 0.975]
Intercept 0.1421 0.005 30.458 0.000 0.133 0.151
credit_limit_res 3.063e–06 1.54e–06 1.987 0.047 4.17e–08 6.08e–06

The parameter estimate for the treatment is exactly the same as the one you got in
both the debiasing step and when running the regression model with credit limit plus
all the other covariates. Additionally, the standard error and p-value are now also just
like when you first ran the model, with all the variables included. This is the effect of
the denoising step.

Of course, you can also plot the relationship between the debiased treatment with the
denoised outcome, alongside the predictions from the final model to see what is
going on:

FWL Summary
I don’t know if you can already tell, but I really like illustrative figures. Even if they
don’t reflect any real data, they can be quite useful to visualize what is going on
behind some fairly technical concept. It wouldn’t be different with FWL. So to sum‐
marize, consider that you want to estimate the relationship between a treatment T
and an outcome Y but you have some confounder X. You plot the treatment on the x-
axis, the outcome on the y-axis, and the confounder as the color dimension. You ini‐
tially see a negative slope between treatment and outcome, but you have strong
reasons (some domain knowledge) to believe that the relationship should be positive,
so you decide to debias the data.

To do that, you first estimate E T X  using linear regression. Then, you construct a
debiased version of the treatment: T − E T X  (see Figure 4-1). With this debiased
treatment, you can already see the positive relationship you were hoping to find. But
you still have a lot of noise.

112 | Chapter 4: The Unreasonable Effectiveness of Linear Regression



Figure 4-1. How orthogonalization removes bias

To deal with the noise, you estimate E Y X , also using a regression model. Then,
you construct a denoised version of the outcome: Y − E T X  (see Figure 4-2). You
can view this denoised outcome as the outcome after you’ve accounted for all the var‐
iance in it that was explained by X. If X explains a lot of the variance in Y, the
denoised outcome will be less noisy, making it easier to see the relationship you really
care about: that between T and Y.

Figure 4-2. How orthogonalization removes noise

Frisch-Waugh-Lovell Theorem and Orthogonalization | 113



Finally, after both debiasing and denoising, you can clearly see a positive relationship
between T and Y. All there is left to do is fit a final model to this data:

This final regression will have the exact same slope as the one where you regress Y on
T and X at the same time.

Debiasing and the Intercept

One word of caution, though. In causal inference, you are mostly
concerned with the slope of this regression line, since the slope is a
linear approximation to the effect of the continuous treatment,
∂
∂t E y t . But, if you also care about the intercept—for instance, if
you are trying to do counterfactual predictions—you should know
that debiasing and denoising makes the intercept equal to zero.

Regression as an Outcome Model
Throughout this section I emphasized how regression works mostly by orthogonaliz‐
ing the treatment. However, you can also see regression as a potential outcome impu‐
tation technique. Suppose that the treatment is binary. If regression of Y on X in the
control population (T = 0) yields good approximation to E Y0 X , then you can use
that model to impute Y0 and estimate the ATT:

ATT = 1
N1

∑� Ti = 1 Yi − μ0 Xi ,

where N1 is the number of treated units.

Indicator Function

Throughout this book, I’ll use � .  to represent the indicator func‐
tion. This function returns 1 when the argument inside it evaluates
to true and zero otherwise.

114 | Chapter 4: The Unreasonable Effectiveness of Linear Regression



A similar argument can be made to show that if regression on the treated units can
model E Y1 X , you can use it to estimate the average effect on the untreated. If you
put these two arguments side by side, you can estimate the ATE as follows:

ATE = 1
N ∑ μ1 Xi − μ0 Xi

This estimator will impute both potential outcomes for all units. It is equivalent to
regressing Y on both X and T and reading the parameter estimate on T.

Alternatively, you can impute just the potential outcomes that are missing:

ATE = 1
N ∑ � Ti = 1 Yi − μ0 Xi + � Ti = 0 μ1 Xi − Yi

When T is continuous, this is a bit harder to conceptualize, but you can understand
regression as imputing the whole treatment response function, which involves imput‐
ing the potential outcomes Y t  as if it was a line.

The fact that regression works if it can either correctly estimate E T X  for orthogon‐
alization or correctly estimate the potential outcomes E Yt X  grants it doubly robust
properties, something you’ll explore further in Chapter 5. Seeing regression through
this lens will also be important when you learn about difference-in-differences in
Part IV.

PRACTICAL EXAMPLE

Public or Private Schools?
In the book Mastering Metrics (Princeton University Press), Angrist and Pischke show
how regression can be used to adjust for the bias when estimating the impact of going
to private schools on one’s income. Graduates of private school often make more
money than those of public school, but it’s hard to say how much of this relationship
is causal. For instance, your parents’ income might confound the relationship, as kids
of richer families are both more likely to go to private schools and to earn more. Simi‐
larly, since private schools are very selective, it could be that they take in only the stu‐
dents who would already be better off anyway.

So much so that a naive regression of income on a private school dummy is almost
sure to return a positive effect. In other words, estimating the following model would
give you a positive and significant β1:

incomei = δ0 + β1private + ei

Regression as an Outcome Model | 115



What Angrist and Pischke show, however, is that if you adjust for SAT score and
parents’ income, the measured impact decreases. That is, if you augment the model
with these two variables, your β1 will be smaller, compared to the one you would get
with the short model:

incomei = δ0 + β1private + δ1SATi + δ2ParentInci + ei

Still, after running a regression with parent income, the effect of private schools
remained positive and significant, at least in the dataset used by the authors. However,
one final set of controls managed to make the relationship insignificant. The authors
included the average SAT of the school the students applied to (regardless of them
being accepted). This can be interpreted as a proxy for ambition:

incomei = δ0 + β1private + δ1SATi + δ2ParentInci

+δ3AvgSATSchooli + ei

Once they added the ambition proxy controls, the estimated β1 became insignificant.
Interestingly, keeping only those controls and dropping the SAT and parents’ income
controls still resulted in a nonsignificant estimate. This indicates that, given your
ambition level, it doesn’t matter if you go to a public or private school, at least in
terms of your earnings:

Positivity and Extrapolation
Since regression models the potential outcome as a parametric function, it allows for
extrapolation outside the region where you have data on all treatment levels. This can
be a blessing or a curse. It all depends on whether the extrapolation is reasonable. For
example, consider that you have to estimate a treatment effect in a dataset with low
overlap. Call it Dataset 1. Dataset 1 has no control units for high values of a covariate
x and no treated units for low values of that same covariate. If you use regression to

116 | Chapter 4: The Unreasonable Effectiveness of Linear Regression



estimate the treatment effect on this data, it will impute Y0 and Y1 as shown by the
lines in the first plot:

This is fine, so long as the same relationship between Y0 and x you’ve fitted in the
control for low levels of x is also valid for high values of x and that the Y1 you’ve fitted
on the treated also extrapolates well to low levels of x. Generally, if the trends in the
outcome where you do have overlap look similar across the covariate space, a small
level of extrapolation becomes less of an issue.

However, too much extrapolation is always dangerous. Let’s suppose you’ve estimated
the effect on Dataset 1, but then you collect more data, now randomizing the treat‐
ment. On this new data, call it Dataset 2, you see that the effect gets larger and larger
for positive values of x. Consequently, if you evaluate your previous fit on this new
data, you’ll realize that you grossly underestimated the true effect of the treatment.
This goes to show that you can never really know what will happen to the treatment
effect in a region where you don’t have positivity. You might choose to trust your
extrapolations for those regions, but that is not without risk.

Nonlinearities in Linear Regression
Up until this point, the treatment response curve seemed pretty linear. It looked like
an increase in credit line caused a constant increase in risk, regardless of the credit
line level. Going from a line of 1,000 to 2,000 seemed to increase risk about the same
as going from a line of 2,000 to 3,000. However, you are likely to encounter situations
where this won’t be the case.

Nonlinearities in Linear Regression | 117



As an example, consider the same data as before, but now your task is to estimate the
causal effect of credit limit on credit card spend:

In [15]: spend_data = pd.read_csv("./data/spend_data.csv")

         spend_data.head()
         

wage educ exper married credit_score1 credit_score2 credit_limit spend
0 950.0 11 16 1 500.0 518.0 3200.0 3848
1 780.0 11 7 1 414.0 429.0 1700.0 3144
2 1230.0 14 9 1 586.0 571.0 4200.0 4486
3 1040.0 15 8 1 379.0 411.0 1500.0 3327
4 1000.0 16 1 1 379.0 518.0 1800.0 3508

And for the sake of simplicity, let’s consider that the only confounder you have here is
wage (assume that is the only information the bank uses when deciding the credit
limit). The causal graph of this process looks something like this:

As a result, you have to condition on wage to identify the effect of credit lines on
spending. If you want to use orthogonalization to estimate this effect, you can say that
you need to debias credit lines by regressing it on wage and getting the residuals.
Nothing new so far. But there is a catch. If you plot spend by credit lines for multiple
wage levels, you can clearly see that the relationship is not linear:

Rather, the treatment response curve seems to have some sort of concavity to it: the
higher the credit limit, the lower the slope of this curve. Or, in causal inference

118 | Chapter 4: The Unreasonable Effectiveness of Linear Regression



language, since slopes and causal effects are intimately related, you can also say that
the effect of lines on spend diminishes as you increase lines: going from a line of
1,000 to 2,000 increases spend more than going from 2,000 to 3,000.

Linearizing the Treatment
To deal with that, you first need to transform the treatment into something that does
have a linear relationship with the outcome. For instance, you know that the relation‐
ship seems concave, so you can try to apply some concave function to lines. Some
good candidates to try out are the log function, the square root function, or any func‐
tion that takes credit lines to the power of a fraction.

In this case, let’s try the square root:

Now we are getting somewhere! The square root of the credit line seems to have a
linear relationship with spend. It’s definitely not perfect. If you look very closely, you
can still see some curvature. But it might just do for now.

I’m sad to say that this process is fairly manual. You have to try a bunch of stuff and
see what linearizes the treatment better. Once you find something that you are happy
with, you can apply it when running a linear regression model. In this example, it
means that you will be estimating the model:

spendi = β0 + β1 linei + ei

and your causal parameter is β1.

This model can be estimated with statsmodels, by using the NumPy square root
function directly in the formula:

In [16]: model_spend = smf.ols(
             'spend ~ np.sqrt(credit_limit)',data=spend_data
         ).fit()

Nonlinearities in Linear Regression | 119



         model_spend.summary().tables[1]
         

coef std err t P>|t| [0.025 0.975]
Intercept 493.0044 6.501 75.832 0.000 480.262 505.747
np.sqrt(credit_limit) 63.2525 0.122 519.268 0.000 63.014 63.491

But you are not done yet. Recall that wage is confounding the relationship between
credit lines and spend. You can see this by plotting the predictions from the preced‐
ing model against the original data. Notice how its slope is probably upward biased.
That’s because more wage causes both spend and credit lines to increase:

If you include wage in the model:

spendi = β0 + β1 linei + β2wagei + ei

and estimate β1 again, you get an unbiased estimate of the effect of lines on spend
(assuming wage is the only confounder, of course). This estimate is smaller than the
one you got earlier. That is because including wage in the model fixed the upward
bias:

In [17]: model_spend = smf.ols('spend ~ np.sqrt(credit_limit)+wage',
                               data=spend_data).fit()

         model_spend.summary().tables[1]
         

coef std err t P>|t| [0.025 0.975]
Intercept 383.5002 2.746 139.662 0.000 378.118 388.882
np.sqrt(credit_limit) 43.8504 0.065 672.633 0.000 43.723 43.978
wage 1.0459 0.002 481.875 0.000 1.042 1.050

120 | Chapter 4: The Unreasonable Effectiveness of Linear Regression



Nonlinear FWL and Debiasing
As to how the FWL theorem works with nonlinear data, it is exactly like before, but
now you have to apply the nonlinearity first. That is, you can decompose the process
of estimating a nonlinear model with linear regression as follows:

1. Find a function F that linearizes the relationship between T and Y.
2. A debiasing step, where you regress the treatment F T  on confounder variables

X and obtain the treatment residuals F T = F T − F T .
3. A denoising step, where you regress the outcome Y on the confounder variables

X and obtain the outcome residuals Y = Y − Y.
4. An outcome model where you regress the outcome residual Y on the treatment

residual F T  to obtain an estimate for the causal effect of F T  on Y.

In the example, F is the square root, so here is how you can apply the FWL theorem
considering the nonlinearity. (I’m also adding F lines  and spend to the treatment and
outcome residuals, respectively. This is optional, but it makes for better visualization):

In [18]: debias_spend_model = smf.ols(f'np.sqrt(credit_limit) ~ wage',
                                      data=spend_data).fit()
         denoise_spend_model = smf.ols(f'spend ~ wage', data=spend_data).fit()

         
         credit_limit_sqrt_deb = (debias_spend_model.resid 
                                  + np.sqrt(spend_data["credit_limit"]).mean())
         spend_den = denoise_spend_model.resid + spend_data["spend"].mean()

         
         spend_data_deb = (spend_data
                           .assign(credit_limit_sqrt_deb = credit_limit_sqrt_deb,
                                   spend_den = spend_den))

         final_model = smf.ols(f'spend_den ~ credit_limit_sqrt_deb',
                               data=spend_data_deb).fit()

         final_model.summary().tables[1]
         

coef std err t P>|t| [0.025 0.975]
Intercept 1493.6990 3.435 434.818 0.000 1486.966 1500.432
credit_limit_sqrt_deb 43.8504 0.065 672.640 0.000 43.723 43.978

Not surprisingly, the estimate you get here for β1 is the exact same as the one you got
earlier, by running the full model including both the wage confounder and the treat‐
ment. Also, if you plot the prediction from this model against the original data, you

Nonlinearities in Linear Regression | 121



can see that it is not upward biased like before. Instead, it goes right through the mid‐
dle of the wage groups:

Regression for Dummies
Regression and orthogonalization are great and all, but ultimately you have to make
an independence assumption. You have to assume that treatment looks as good as
randomly assigned, when some covariates are accounted for. This can be quite a
stretch. It’s very hard to know if all confounders have been included in the model. For
this reason, it makes a lot of sense for you to push for randomized experiments as
much as you can. For instance, in the banking example, it would be great if the credit
limit was randomized, as that would make it pretty straightforward to estimate its
effect on default rate and customer spend. The thing is that this experiment would be
incredibly expensive. You would be giving random credit lines to very risky custom‐
ers, who would probably default and cause a huge loss.

Conditionally Random Experiments
The way around this conundrum is not the ideal randomized controlled trial, but it is
the next best thing: stratified or conditionally random experiments. Instead of crafting
an experiment where lines are completely random and drawn from the same proba‐
bility distribution, you instead create multiple local experiments, where you draw
samples from different distributions, depending on customer covariates. For instance,
you know that the variable credit_score1 is a proxy for customer risk. So you can
use it to create groups of customers that are more or less risky, dividing them into
buckets of similar credit_score1. Then, for the high-risk bucket—with low
credit_score1—you randomize credit lines by sampling from a distribution with a
lower average; for low-risk customers—with high credit_score1—you randomize
credit lines by sampling from a distribution with a higher average:

122 | Chapter 4: The Unreasonable Effectiveness of Linear Regression



In [19]: risk_data_rnd = pd.read_csv("./data/risk_data_rnd.csv")
         risk_data_rnd.head()
         

wage educ exper married credit_score1 credit_score2 credit_score1_buckets credit_limit default
0 890.0 11 16 1 490.0 500.0 400 5400.0 0
1 670.0 11 7 1 196.0 481.0 200 3800.0 0
2 1220.0 14 9 1 392.0 611.0 400 5800.0 0
3 1210.0 15 8 1 627.0 519.0 600 6500.0 0
4 900.0 16 1 1 275.0 519.0 200 2100.0 0

Plotting the histogram of credit limit by credit_score1_buckets, you can see that
lines were sampled from different distributions. The buckets with higher score—low-
risk customers—have a histogram skewed to the left, with higher lines. The groups
with risker customers—low score—have lines drawn from a distribution that is
skewed to the right, with lower lines. This sort of experiment explores credit lines that
are not too far from what is probably the optimal line, which lowers the cost of the
test to a more manageable amount:

Beta Sampling

In this experiment, credit limit was sampled from Beta distribu‐
tions. The Beta distribution can be understood as generalization of
the uniform distribution, which makes it particularly handy when
you want your sample to be confined to a specific range.

This doesn’t mean that conditionally random experiments are better than completely
random experiments. They sure are cheaper, but they add a tone of extra complexity.
For this reason, if you opt for a conditionally random experiment, for whatever

Regression for Dummies | 123



reason, try to keep it as close to a completely random experiment as possible. This
means that:

• The lower the number of groups, the easier it will be to deal with the condition‐
ally random test. In this example you only have 5 groups, since you divided
credit_score1 in buckets of 200 and the score goes from 0 to 1,000. Combining
different groups with different treatment distribution increases the complexity, so
sticking to fewer groups is a good idea.

• The bigger the overlap in the treatment distributions across groups, the easier
your life will be. This has to do with the positivity assumption. In this example, if
the high-risk group had zero probability of receiving high lines, you would have
to rely on dangerous extrapolations to know what would happen if they were to
receive those high lines.

If you crank these two rules of thumb to their maximum, you get back a completely
random experiment, which means both of them carry a trade-off: the lower the num‐
ber of groups and the higher the overlap, the easier it will be to read the experiment,
but it will also be more expensive, and vice versa.

Stratified experiments can also be used as a tool to minimize var‐
iance and to ensure balance between treatment and control on the
stratified variables. But in those applications, the treatment distri‐
bution is designed to be the same across all groups or strata.

Dummy Variables
The neat thing about conditionally random experiments is that the conditional inde‐
pendence assumption is much more plausible, since you know lines were randomly
assigned given a categorical variable of your choice. The downside is that a simple
regression of the outcome on the treated will yield a biased estimate. For example,
here is what happens when you estimate the model, without the confounder included:

defaulti = β0 + β1linesi + ei

In [20]: model = smf.ols("default ~ credit_limit", data=risk_data_rnd).fit()
         model.summary().tables[1]
         

coef std err t P>|t| [0.025 0.975]
Intercept 0.1369 0.009 15.081 0.000 0.119 0.155
credit_limit –9.344e–06 1.85e–06 –5.048 0.000 –1.3e–05 –5.72e–06

124 | Chapter 4: The Unreasonable Effectiveness of Linear Regression



As you can see, the causal parameter estimate, β1, is negative, which makes no sense
here. Higher credit lines probably do not decrease a customer’s risk. What happened
is that, in this data, due to the way the experiment was designed, lower-risk customers
—those with high credit_score1—got, on average, higher lines.

To adjust for that, you need to include in the model the group within which the treat‐
ment is randomly assigned. In this case, you need to control for credit_score1_buck
ets. Even though this group is represented as a number, it is actually a categorical
variable: it represents a group. So, the way to control for the group itself is to create
dummy variables. A dummy is a binary column for a group. It is 1 if the customer
belongs to that group and 0 otherwise. As a customer can only be from one group, at
most one dummy column will be 1, with all the others being zero. If you come from a
machine learning background, you might know this as one-hot encoding. They are
exactly the same thing.

In pandas, you can use the pd.get_dummies function to create dummies. Here, I’m
passing the column that represents the groups, credit_score1_buckets, and saying
that I want to create dummy columns with the suffix sb (for score bucket). Also, I’m
dropping the first dummy, that of the bucket 0 to 200. That’s because one of the
dummy columns is redundant. If I know that all the other columns are zero, the one
that I dropped must be 1:

In [21]: risk_data_dummies = (
 risk_data_rnd
  .join(pd.get_dummies(risk_data_rnd["credit_score1_buckets"],
     prefix="sb",
     drop_first=True))
)
         

wage educ exper married ... sb_400 sb_600 sb_800 sb_1000
0 890.0 11 16 1 ... 1 0 0 0
1 670.0 11 7 1 ... 0 0 0 0
2 1220.0 14 9 1 ... 1 0 0 0
3 1210.0 15 8 1 ... 0 1 0 0
4 900.0 16 1 1 ... 0 0 0 0

Once you have the dummy columns, you can add them to your model and estimate
β1 again:

defaulti = β0 + β1linesi + θGi + ei

Regression for Dummies | 125



Now, you’ll get a much more reasonable estimate, which is at least positive, indicating
that more credit lines increase risk of default.

In [22]: model = smf.ols(
             "default ~ credit_limit + sb_200+sb_400+sb_600+sb_800+sb_1000",
             data=risk_data_dummies
         ).fit()

         model.summary().tables[1]
         

coef std err t P>|t| [0.025 0.975]
Intercept 0.2253 0.056 4.000 0.000 0.115 0.336
credit_limit 4.652e–06 2.02e–06 2.305 0.021 6.97e–07 8.61e–06
sb_200 –0.0559 0.057 –0.981 0.327 –0.168 0.056
sb_400 –0.1442 0.057 –2.538 0.011 –0.256 –0.033
sb_600 –0.2148 0.057 –3.756 0.000 –0.327 –0.103
sb_800 –0.2489 0.060 –4.181 0.000 –0.366 –0.132
sb_1000 –0.2541 0.094 –2.715 0.007 –0.438 –0.071

I’m only showing you how to create dummies by hand so you know what happens
under the hood. This will be very useful if you have to implement that sort of regres‐
sion in some other framework that is not in Python. In Python, if you are using stats
models, the C() function in the formula can do all of that for you:

In [23]: model = smf.ols("default ~ credit_limit + C(credit_score1_buckets)",
                         data=risk_data_rnd).fit()

         model.summary().tables[1]
         

coef std err t P>|t| [0.025 0.975]
Intercept 0.2253 0.056 4.000 0.000 0.115 0.336
C(credit_score1_buckets)[T.200] –0.0559 0.057 –0.981 0.327 –0.168 0.056
C(credit_score1_buckets)[T.400] –0.1442 0.057 –2.538 0.011 –0.256 –0.033
C(credit_score1_buckets)[T.600] –0.2148 0.057 –3.756 0.000 –0.327 –0.103
C(credit_score1_buckets)[T.800] –0.2489 0.060 –4.181 0.000 –0.366 –0.132
C(credit_score1_buckets)[T.1000] –0.2541 0.094 –2.715 0.007 –0.438 –0.071
credit_limit 4.652e–06 2.02e–06 2.305 0.021 6.97e–07 8.61e–06

Finally, here you only have one slope parameter. Adding dummies to control for con‐
founding gives one intercept per group, but the same slope for all groups. We’ll dis‐
cuss this shortly, but this slope will be a variance weighted average of the regression in
each group. If you plot the model’s predictions for each group, you can clearly see that
you have one line per group, but all of them have the same slope:

126 | Chapter 4: The Unreasonable Effectiveness of Linear Regression



Saturated Regression Model
Remember how I started the chapter highlighting the similarities between regression
and a conditional average? I showed you how running a regression with a binary
treatment is exactly the same as comparing the average between treated and control
group. Now, since dummies are binary columns, the parallel also applies here. If you
take your conditionally random experiment data and give it to someone that is not as
versed in regression as you are, their first instinct will probably be to simply segment
the data by credit_score1_buckets and estimate the effect in each group separately:

In [24]: def regress(df, t, y):
             return smf.ols(f"{y}~{t}", data=df).fit().params[t]

         effect_by_group = (risk_data_rnd
                            .groupby("credit_score1_buckets")
                            .apply(regress, y="default", t="credit_limit"))
         effect_by_group
         

Out[24]: credit_score1_buckets
         0      -0.000071
         200     0.000007
         400     0.000005
         600     0.000003
         800     0.000002
         1000    0.000000
         dtype: float64
         

This would give an effect by group, which means you also have to decide how to aver‐
age them out. A natural choice would be a weighted average, where the weights are
the size of each group:

In [25]: group_size = risk_data_rnd.groupby("credit_score1_buckets").size()
         ate = (effect_by_group * group_size).sum() / group_size.sum()

Regression for Dummies | 127



         ate
         

Out[25]: 4.490445628748722e-06
         

Of course, you can do the exact same thing with regression, by running what is called
a saturated model. You can interact the dummies with the treatment to get an effect
for each dummy defined group. In this case, because the first dummy is removed, the
parameter associated with credit_limit actually represents the effect in the omitted
dummy group, sb_100. It is the exact same number as the one estimated above for the
credit_score1_bucketsearlier group 0 to 200: –0.000071:

In [26]: model = smf.ols("default ~ credit_limit * C(credit_score1_buckets)",
                         data=risk_data_rnd).fit()
         model.summary().tables[1]
         

coef std err t P>|t| [0.025 0.975]
Intercept 0.3137 0.077 4.086 0.000 0.163 0.464
C(credit_score1_buckets)[T.200] –0.1521 0.079 –1.926 0.054 –0.307 0.003
C(credit_score1_buckets)[T.400] –0.2339 0.078 –3.005 0.003 –0.386 –0.081
C(credit_score1_buckets)[T.600] –0.2957 0.080 –3.690 0.000 –0.453 –0.139
C(credit_score1_buckets)[T.800] –0.3227 0.111 –2.919 0.004 –0.539 –0.106
C(credit_score1_buckets)[T.1000] –0.3137 0.428 –0.733 0.464 –1.153 0.525
credit_limit –7.072e–05 4.45e–05 –1.588 0.112 –0.000 1.66e–05
credit_limit:C(credit_score1_buckets)[T.200] 7.769e–05 4.48e–05 1.734 0.083 –1.01e–05 0.000
credit_limit:C(credit_score1_buckets)[T.400] 7.565e–05 4.46e–05 1.696 0.090 –1.18e–05 0.000
credit_limit:C(credit_score1_buckets)[T.600] 7.398e–05 4.47e–05 1.655 0.098 –1.37e–05 0.000
credit_limit:C(credit_score1_buckets)[T.800] 7.286e–05 4.65e–05 1.567 0.117 –1.83e–05 0.000
credit_limit:C(credit_score1_buckets)[T.1000] 7.072e–05 8.05e–05 0.878 0.380 –8.71e–05 0.000

The interaction parameters are interpreted in relation to the effect in the first (omit‐
ted) group. So, if you sum the parameter associated with credit_limit with other
interaction terms, you can see the effects for each group estimated with regression.
They are exactly the same as estimating one effect per group:

In [27]: (model.params[model.params.index.str.contains("credit_limit:")]
          + model.params["credit_limit"]).round(9)
         

Out[27]: credit_limit:C(credit_score1_buckets)[T.200]     0.000007
         credit_limit:C(credit_score1_buckets)[T.400]     0.000005
         credit_limit:C(credit_score1_buckets)[T.600]     0.000003
         credit_limit:C(credit_score1_buckets)[T.800]     0.000002
         credit_limit:C(credit_score1_buckets)[T.1000]    0.000000
         dtype: float64
         

128 | Chapter 4: The Unreasonable Effectiveness of Linear Regression



Plotting this model’s prediction by group will also show that, now, it is as if you are
fitting a separate regression for each group. Each line will have not only a different
intercept, but also a different slope. Besides, the saturated model has more parameters
(degrees of freedom), which also means more variance, all else equal. If you look at
the following plot, you’ll see a line with negative slope, which doesn’t make sense in
this context. However, that slope is not statistically significant. It is probably just noise
due to a small sample in that group:

Regression as Variance Weighted Average
But if both the saturated regression and calculating the effect by group give you the
exact same thing, there is a very important question you might be asking yourself.
When you run the model default ~ credit_limit + C(credit_score1_buckets),
without the interaction term, you get a single effect: only one slope parameter. Impor‐
tantly, if you look back, that effect estimate is different from the one you got by esti‐
mating an effect per group and averaging the results using the group size as weights.
So, somehow, regression is combining the effects from different groups. And the way
it does it is not a sample size weighted average. So what is it then?

Again, the best way to answer this question is by using some very illustrative simula‐
ted data. Here, let’s simulate data from two different groups. Group 1 has a size of
1,000 and an average treatment effect of 1. Group 2 has a size of 500 and an average
treatment effect of 2. Additionally, the standard deviation of the treatment in group 1
is 1 and 2 in group 2:

In [28]: np.random.seed(123)

         # std(t)=1
         t1 = np.random.normal(0, 1, size=1000)
         df1 = pd.DataFrame(dict(
             t=t1,
             y=1*t1, # ATE of 1
             g=1,

Regression for Dummies | 129



         ))

         # std(t)=2
         t2 = np.random.normal(0, 2, size=500)
         df2 = pd.DataFrame(dict(
             t=t2,
             y=2*t2, # ATE of 2
             g=2,
         ))

         df = pd.concat([df1, df2])
         df.head()
         

t y g
0 –1.085631 –1.085631 1
1 0.997345 0.997345 1
2 0.282978 0.282978 1
3 –1.506295 –1.506295 1
4 –0.578600 –0.578600 1

If you estimate the effects for each group separately and average the results with the
group size as weights, you’d get an ATE of around 1.33, 1 * 1000 + 2 * 500 /1500:

In [29]: effect_by_group = df.groupby("g").apply(regress, y="y", t="t")
         ate = (effect_by_group *
                df.groupby("g").size()).sum() / df.groupby("g").size().sum()
         ate
         

Out[29]: 1.333333333333333
         

But if you run a regression of y on t while controlling for the group, you get a very
different result. Now, the combined effect is closer to the effect of group 2, even
though group 2 has half the sample of group 1:

In [30]: model = smf.ols("y ~ t + C(g)", data=df).fit()
         model.params
         

Out[30]: Intercept    0.024758
         C(g)[T.2]    0.019860
         t            1.625775
         dtype: float64
         

The reason for this is that regression doesn’t combine the group effects by using the
sample size as weights. Instead, it uses weights that are proportional to the variance of
the treatment in each group. Regression prefers groups where the treatment varies a
lot. This might seem odd at first, but if you think about it, it makes a lot of sense. If

130 | Chapter 4: The Unreasonable Effectiveness of Linear Regression



the treatment doesn’t change much within a group, how can you be sure of its effect?
If the treatment changes a lot, its impact on the outcome will be more evident.

To summarize, if you have multiple groups where the treatment is randomized inside
each group, the conditionality principle states that the effect is a weighted average of
the effect inside each group:

ATE = E ∂
∂t E Yi T = t, Groupi w Groupi

Depending on the method, you will have different weights. With regression,
w Groupi ∝ σ2 T Group, but you can also choose to manually weight the group
effects using the sample size as the weight: w Groupi = NGroup.

See Also

Knowing this difference is key to understanding what is going on
behind the curtains with regression. The fact that regression
weights the group effects by variance is something that even the
best researchers need to be constantly reminded of. In 2020, the
econometric field went through a renaissance regarding the diff-in-
diff method (you’ll see more about it in Part IV). At the center of
the issue was regression not weighting effects by sample size. If you
want to learn more about it, I recommend checking it out the paper
“Difference-in-Differences with Variation in Treatment Timing,” by
Andrew Goodman-Bacon. Or just wait until we get to Part IV.

De-Meaning and Fixed Effects
You just saw how to include dummy variables in your model to account for different
treatment assignments across groups. But it is with dummies where the FWL theo‐
rem really shines. If you have a ton of groups, adding one dummy for each is not only
tedious, but also computationally expensive. You would be creating lots and lots of
columns that are mostly zero. You can solve this easily by applying FWL and under‐
standing how regression orthogonalizes the treatment when it comes to dummies.

You already know that the debiasing step in FWL involves predicting the treatment
from the covariates, in this case, the dummies:

In [31]: model_deb = smf.ols("credit_limit ~ C(credit_score1_buckets)",
                             data=risk_data_rnd).fit()
         model_deb.summary().tables[1]
         

Regression for Dummies | 131



coef std err t P>|t| [0.025 0.975]
Intercept 1173.0769 278.994 4.205 0.000 626.193 1719.961
C(credit_score1_buckets)[T.200] 2195.4337 281.554 7.798 0.000 1643.530 2747.337
C(credit_score1_buckets)[T.400] 3402.3796 279.642 12.167 0.000 2854.224 3950.535
C(credit_score1_buckets)[T.600] 4191.3235 280.345 14.951 0.000 3641.790 4740.857
C(credit_score1_buckets)[T.800] 4639.5105 291.400 15.921 0.000 4068.309 5210.712
C(credit_score1_buckets)[T.1000] 5006.9231 461.255 10.855 0.000 4102.771 5911.076

Since dummies work basically as group averages, you can see that, with this model,
you are predicting exactly that: if credit_score1_buckets=0, you are predicting the
average line for the group credit_score1_buckets=0; if credit_score1_buckets=1,
you are predicting the average line for the group credit_score1_buckets=1 (which
is given by summing the intercept to the coefficient for that group
1173.0769 + 2195.4337 = 3368.510638) and so on and so forth. Those are exactly the
group averages:

In [32]: risk_data_rnd.groupby("credit_score1_buckets")["credit_limit"].mean()
         

Out[32]: credit_score1_buckets
         0       1173.076923
         200     3368.510638
         400     4575.456498
         600     5364.400448
         800     5812.587413
         1000    6180.000000
         Name: credit_limit, dtype: float64
         

Which means that if you want to residualize the treatment, you can do that in a much
simpler and effective way. First, calculate the average treatment for each group:

In [33]: risk_data_fe = risk_data_rnd.assign(
             credit_limit_avg = lambda d: (d
                                           .groupby("credit_score1_buckets")
                                           ["credit_limit"].transform("mean"))
         )
         

Then, to get the residuals, subtract that group average from the treatment. Since this
approach subtracts the average treatment, it is sometimes referred to as de-meaning
the treatment. If you want to do that inside the regression formula, you must wrap
the mathematical operation around I(...):

In [34]: model = smf.ols("default ~ I(credit_limit-credit_limit_avg)",
                         data=risk_data_fe).fit()
         model.summary().tables[1]
         

132 | Chapter 4: The Unreasonable Effectiveness of Linear Regression



coef std err t P>|t| [0.025 0.975]
Intercept 0.0935 0.003 32.121 0.000 0.088 0.099
I(credit_limit – credit_limit_avg) 4.652e–06 2.05e–06 2.273 0.023 6.4e–07 8.66e–06

The parameter estimate you got here is exactly the same as the one you got when
adding dummies to your model. That’s because, mathematically speaking, they are
equivalent. This idea goes by the name of fixed effects, since you are controlling for
anything that is fixed within a group. It comes from the literature of causal inference
with temporal structures (panel data), which you’ll explore more in Part IV.

Another idea from the same literature is to include the average treatment by group in
the regression model (from Mundlak’s, 1978). Regression will residualize the treat‐
ment from the additional variables included, so the effect here is about the same:

In [35]: model = smf.ols("default ~ credit_limit + credit_limit_avg",
                         data=risk_data_fe).fit()
         model.summary().tables[1]
         

coef std err t P>|t| [0.025 0.975]
Intercept 0.4325 0.020 21.418 0.000 0.393 0.472
credit_limit 4.652e–06 2.02e–06 2.305 0.021 6.96e–07 8.61e–06
credit_limit_avg -7.763e–05 4.75e–06 –16.334 0.000 –8.69e–05 –6.83e–05

PRACTICAL EXAMPLE

Marketing Mix Modeling
Measuring the impact of advertising on sales is very hard, since you usually can’t ran‐
domize who gets to see your ads. One popular alternative to randomization in the
advertising industry is the technique called marketing mix modeling (MMM).
Despite the fancy name, MMMs are just regressions of sales on marketing strategies
indicators and some confounders. For example, let’s say you want to know the effect
of your budget on TV, social media, and search advertising on your product’s sales.
You can run a regression model where each unit i is a day:

Salesi = δ0 + β1TVi + β2Sociali + β3Searchi

+δ1CompetitorSalesi + δ2Monthi + δ3Trendi + ei

To account for the fact that you might have increased your marketing budget on a
good month, you can adjust for this confounder by including additional controls in
your regression. For example, you can include your competitor’s sales, a dummy for
each month, and a trend variable.

Regression for Dummies | 133



Omitted Variable Bias: Confounding Through
the Lens of Regression
I hope I made myself very clear in Chapter 3 when I said that common causes—con‐
founders—will bias the estimated relationship between the treated and the outcome.
That is why you need to account for them by, for example, including them in a regres‐
sion model. However, regression has its own particular take on confounding bias.
Sure, everything said up until now still holds. But regression allows you to be more
precise about the confounding bias. For example, let’s say you want to estimate the
effect of credit lines on default and that wage is the only confounder:

In this case, you know you should be estimating the model that includes the
confounder:

defaulti = β0 + β1linesi + β2 > wagei + ei,

But if you instead estimate a shorter model, where the confounder is omitted:

defaulti = β0 + β1linesi + ei,

the resulting estimate becomes biased:

In [36]: short_model = smf.ols("default ~ credit_limit", data=risk_data).fit()
         short_model.params["credit_limit"]
         

Out[36]: -2.401961992596885e-05
         

As you can see, it looks like higher credit lines cause default to go down, which is
nonsense. But you know that already. What you don’t know is that you can be precise
about the size of that bias. With regression, you can say that the bias due to an omit‐
ted variable is equal to the effect in the model where it is included plus the effect of the
omitted variable on the outcome times the regression of omitted on included. Don’t
worry. I know this is a mouthful, so let’s digest it little by little. First, it means that
simple regression of Y on T will be the true causal parameter τ, plus a bias term:

134 | Chapter 4: The Unreasonable Effectiveness of Linear Regression



Cov T, Y
Var T = τ + βomitted′ δomitted

This bias term is the coefficient of the omitted confounder on the outcome, βomitted,
times the coefficient of regressing the omitted variable on the treatment, δomitted. To
check that, you can obtain the biased parameter estimate you got earlier with the fol‐
lowing code, which reproduces the omitted variable bias formula:

In [37]: long_model = smf.ols("default ~ credit_limit + wage",
                              data=risk_data).fit()

         omitted_model = smf.ols("wage ~ credit_limit", data=risk_data).fit()

         (long_model.params["credit_limit"] 
          + long_model.params["wage"]*omitted_model.params["credit_limit"])
         

Out[37]: -2.4019619925968762e-05
         

Neutral Controls
By now, you probably have a good idea about how regression adjusts for confounder
variables. If you want to know the effect of the treatment T on Y while adjusting for
confounders X, all you have to do is include X in the model. Alternatively, to get the
exact same result, you can predict T from X, get the residuals, and use that as a
debiased version of the treatment. Regressing Y on those residuals will give you the
relationship of T and Y while holding X fixed.

But what kind of variables should you include in X? Again, it’s not because adding
variables adjusts for them that you want to include everything in your regression
model. As seen in the previous chapters, you don’t want to include common effects
(colliders) or mediators, as those would induce selection bias. But in the context of
regression, there are more types of controls you should know about. Controls that, at
first, seem like they are innocuous, but are actually quite harmful. These controls are
named neutral because they don’t influence the bias in your regression estimate. But
they can have severe implications in terms of variance. As you’ll see, there is a bias–
variance trade-off when it comes to including certain variables in your regression.
Consider, for instance, the following DAG:

Neutral Controls | 135



Should you include credit_score2 in your model? If you don’t include it, you’ll get
the same result you’ve been seeing all along. That result is unbiased, as you are adjust‐
ing for credit_score1_buckets. But, although you don’t need to, look at what hap‐
pens when you do include credit_score2. Compare the following results to the one
you got earlier, which didn’t include credit_score2. What changed?

In [38]: formula = "default~credit_limit+C(credit_score1_buckets)+credit_score2"
         model = smf.ols(formula, data=risk_data_rnd).fit()
         model.summary().tables[1]
         

coef std err t P>|t| [0.025 0.975]
Intercept 0.5576 0.055 10.132 0.000 0.450 0.665
C(credit_score1_buckets)[T.200] –0.0387 0.055 –0.710 0.478 –0.146 0.068
C(credit_score1_buckets)[T.400] –0.1032 0.054 –1.898 0.058 –0.210 0.003
C(credit_score1_buckets)[T.600] –0.1410 0.055 –2.574 0.010 –0.248 –0.034
C(credit_score1_buckets)[T.800] –0.1161 0.057 –2.031 0.042 –0.228 –0.004
C(credit_score1_buckets)[T.1000] –0.0430 0.090 –0.479 0.632 –0.219 0.133
credit_limit 4.928e–06 1.93e–06 2.551 0.011 1.14e–06 8.71e–06
credit_score2 –0.0007 2.34e–05 –30.225 0.000 –0.001 –0.001

First, the parameter estimate on credit_limit became a bit higher. But, more impor‐
tantly, the standard error decreases. That’s because credit_score2 is a good predictor
of the outcome Y and it will contribute to the denoising step of linear regression. In
the final step of FWL, because credit_score2 was included, the variance in Y will be
reduced, and regressing it on T will yield more precise results.

This is a very interesting property of linear regression. It shows that it can be used not
only to adjust for confounders, but also to reduce noise. For example, if you have data
from a properly randomized A/B test, you don’t need to worry about bias. But you
can still use regression as a noise reduction tool. Just include variables that are highly
predictive of the outcome (and that don’t induce selection bias).

Noise Reduction Techniques

There are other noise reduction techniques out there. The most
famous one is CUPED, which was developed by Microsoft
researchers and is widely used in tech companies. CUPED is very
similar to just doing the denoising part of the FWL theorem.

Noise Inducing Control
Just like controls can reduce noise, they can also increase it. For example, consider
again the case of a conditionally random experiment. But this time, you are interested

136 | Chapter 4: The Unreasonable Effectiveness of Linear Regression



in the effect of credit limit on spend, rather than on risk. Just like in the previous
example, credit limit was randomly assigned, given credit_score1. But this time,
let’s say that credit_score1 is not a confounder. It causes the treatment, but not the
outcome. The causal graph for this data-generating process looks like this:

This means that you don’t need to adjust for credit_score1 to get the causal effect of
credit limit on spend. A single variable regression model would do. Here, I’m keeping
the square root function to account for the concavity in the treatment response
function:

In [39]: spend_data_rnd = pd.read_csv("data/spend_data_rnd.csv")

         model = smf.ols("spend ~ np.sqrt(credit_limit)",
                         data=spend_data_rnd).fit()

         model.summary().tables[1]
         

coef std err t P>|t| [0.025 0.975]
Intercept 2153.2154 218.600 9.850 0.000 1723.723 2582.708
np.sqrt(credit_limit) 16.2915 2.988 5.452 0.000 10.420 22.163

But, what happens if you do include credit_score1_buckets?

In [40]: model = smf.ols("spend~np.sqrt(credit_limit)+C(credit_score1_buckets)",
                         data=spend_data_rnd).fit()

         model.summary().tables[1]
         

coef std err t P>|t| [0.025 0.975]
Intercept 2367.4867 556.273 4.256 0.000 1274.528 3460.446
C(credit_score1_buckets)[T.200] –144.7921 591.613 –0.245 0.807 –1307.185 1017.601
C(credit_score1_buckets)[T.400] –118.3923 565.364 –0.209 0.834 –1229.211 992.427
C(credit_score1_buckets)[T.600] –111.5738 570.471 –0.196 0.845 –1232.429 1009.281
C(credit_score1_buckets)[T.800] –89.7366 574.645 –0.156 0.876 –1218.791 1039.318
C(credit_score1_buckets)[T.1000] 363.8990 608.014 0.599 0.550 –830.720 1558.518
np.sqrt(credit_limit) 14.5953 3.523 4.142 0.000 7.673 21.518

Neutral Controls | 137



You can see that it increases the standard error, widening the confidence interval of
the causal parameter. That is because, like you saw in “Regression as Variance Weigh‐
ted Average” on page 129, OLS likes when the treatment has a high variance. But if
you control for a covariate that explains the treatment, you are effectively reducing its
variance.

Feature Selection: A Bias-Variance Trade-Off
In reality, it’s really hard to have a situation where a covariate causes the treatment but
not the outcome. Most likely, you will have a bunch of confounders that cause both T
and Y, but to different degrees. In Figure 4-3, X1 is a strong cause of T but a weak
cause of Y, X3 is a strong cause of Y but a weak cause of T, and X2 is somewhere in
the middle, as denoted by the thickness of each arrow.

Figure 4-3. A confounder like X1, which explains away the variance in the treatment
more than it removes bias, might be causing more harm than good to your estimator

In these situations, you can quickly be caught between a rock and a hard place. On
one hand, if you want to get rid of all the biases, you must include all the covariates;
after all, they are confounders that need to be adjusted. On the other hand, adjusting
for causes of the treatment will increase the variance of your estimator.

To see that, let’s simulate data according to the causal graph in Figure 4-3. Here, the
true ATE is 0.5. If you try to estimate this effect while controlling for all of the con‐
founders, the standard error of your estimate will be too high to conclude anything:

In [41]: np.random.seed(123)

         n = 100
         (x1, x2, x3) = (np.random.normal(0, 1, n) for _ in range(3))
         t = np.random.normal(10*x1 + 5*x2 + x3)

         # ate = 0.05
         y = np.random.normal(0.05*t + x1 + 5*x2 + 10*x3, 5)
         df = pd.DataFrame(dict(y=y, t=t, x1=x1, x2=x2, x3=x3))

         smf.ols("y~t+x1+x2+x3", data=df).fit().summary().tables[1]
         

138 | Chapter 4: The Unreasonable Effectiveness of Linear Regression



coef std err t P>|t| [0.025 0.975]
Intercept 0.2707 0.527 0.514 0.608 –0.775 1.316
t 0.8664 0.607 1.427 0.157 –0.339 2.072
x1 –7.0628 6.038 –1.170 0.245 –19.049 4.923
x2 0.0143 3.128 0.005 0.996 –6.195 6.224
x3 9.6292 0.887 10.861 0.000 7.869 11.389

If you know that one of the confounders is a strong predictor of the treatment and a
weak predictor of the outcome, you can choose to drop it from the model. In this
example, that would be X1. Now, be warned! This will bias your estimate. But maybe
this is a price worth paying if it also decreases variance significantly:

In [42]: smf.ols("y~t+x2+x3", data=df).fit().summary().tables[1]
         

coef std err t P>|t| [0.025 0.975]
Intercept 0.1889 0.523 0.361 0.719 –0.849 1.227
t 0.1585 0.046 3.410 0.001 0.066 0.251
x2 3.6095 0.582 6.197 0.000 2.453 4.766
x3 10.4549 0.537 19.453 0.000 9.388 11.522

The bottom line is that the more confounders you include (adjust for) in your model,
the lower the bias in your causal estimate. However, if you include variables that are
weak predictors of the outcome but strong predictors of the treatment, this bias
reduction will come at a steep cost in terms of variance increase. Saying the same
thing but differently, sometimes it is worth accepting a bit of bias in order to reduce
variance. Also, you should be very aware that not all confounders are equal. Sure, all
of them are common because of both T and Y. But if they explain the treatment too
much and almost nothing about the outcome, you should really consider dropping it
from your adjustment. This is valid for regression, but it will also be true for other
adjustment strategies, like propensity score weighting (see Chapter 5).

Unfortunately, how weak the confounder should be in terms of explaining the treat‐
ment to justify removing it is still an open question in causal inference. Still, it is
worth knowing that this bias-variance trade-off exists, as it will help you understand
and explain what is going on with your linear regression.

Key Ideas
This chapter was about regression, but from a very different perspective than the one
you usually see in machine learning books. Regression here is not a prediction tool.
Notice how I didn’t talk about R2 even once! Rather, regression is used here as a way

Key Ideas | 139



to primarily adjust for confounders and, sometimes, as a variance reduction
technique.

The core of this chapter was orthogonalization as a means to make treatment look as
good as randomly assigned if conditional independence holds. Formally, if Yt ⊥ T X,
you can adjust for the confounding bias due to X by regressing T on X and obtaining
the residuals. Those residuals can be seen as a debiased version of the treatment.

This approach was further developed using the Frisch-Waugh-Lovell theorem, which
states that a multivariate regression can be decomposed into the following steps:

1. A debiasing step, where you regress the treatment T on confounders X and
obtain the treatment residuals T = T − T

2. A denoising step, where you regress the outcome Y on the confounder variables
X and obtain the outcome residuals Y = Y − Y

3. An outcome model where you regress the outcome residual Y on the treatment
residual T to obtain an estimate for the causal effect of T on Y

Everything else in the chapter follows from this theorem—be it nonlinear treatment
response functions, understanding how regression with categorical variables imple‐
ments a weighted average, or the role of good and bad controls in regression.

140 | Chapter 4: The Unreasonable Effectiveness of Linear Regression



CHAPTER 5

Propensity Score

In Chapter 4, you learned how to adjust for confounders using linear regression. In
addition to that, you were introduced to the concept of debiasing through orthogon‐
alization, which is one of the most useful bias-adjusting techniques available. How‐
ever, there is another technique that you need to learn—propensity weighting. This
technique involves modeling the treatment assignment mechanism and using the
model’s prediction to reweight the data, instead of building residuals like in ortho‐
gonalization. In this chapter, you will also learn how to combine the principles of
Chapter 4 with propensity weighting to achieve what is known as double robustness.

The content of this chapter is better suited for when you have binary or discrete treat‐
ments. Still, I’ll show an extension that allows you to use propensity weighting for
continuous treatment.

The Impact of Management Training
A common phenomenon in tech companies is for talented individual contributors
(ICs) to branch out to a management track. But because management often requires a
very different skill set than the ones that made them talented ICs, this transition is
often far from easy. It comes at a high personal cost, not only for the new managers,
but for those they manage.

Hoping to make this transition less painful, a big multinational company decided to
invest in manager training for its new managers. Also, to measure the effectiveness of
the training, the company tried to randomly select managers into this program. The
idea was to compare an engagement score for the employees whose managers got
enrolled in the program with the engagement of those whose managers didn’t. With
proper randomization, this simple comparison would give the average treatment
effect of the training.

141



Unfortunately, things are not that simple. Some managers didn’t want to go to the
training, so they simply didn’t show up. Others managed to get the training even
without being assigned to receive it. The result is that what was to be a randomized
study ended up looking a lot like an observational one.

Noncompliance

People not getting the treatment they are intended to is called non‐
compliance. You will see more about this when we talk about
instrumental variables in Chapter 11.

Now, as an analyst who has to read this data, you’ll have to make treated and untrea‐
ted comparable by adjusting for confounders. To do that, you are given data on the
company managers along with some covariates that describe them:

In [1]: import pandas as pd
        import numpy as np

        df = pd.read_csv("data/management_training.csv")
        df.head()
        

department_id intervention engagement_score ... last_engagement_score department_size
0 76 1 0.277359 ... 0.614261 843
1 76 1 –0.449646 ... 0.069636 843
2 76 1 0.769703 ... 0.866918 843
3 76 1 –0.121763 ... 0.029071 843
4 76 1 1.526147 ... 0.589857 843

The treatment variable is intervention and your outcome of interest is engage
ment_score, which is the average standardized engagement score for that manager’s
employees. Beyond the treatment and the outcome, the covariates in this data are:

department_id

A unique identifier for the department

tenure

The number of years the manager has been with the company (as an employee,
not necessarily as a manager)

n_of_reports

The number of reports the manager has

gender

Categorical variable for manager identified gender

142 | Chapter 5: Propensity Score



role

Job category inside the company

department_size

The number of employees in that same department

department_score

The average engagement score in that same department

last_engagement_score

The average engagement score for that manager in the previous iteration of the
engagement survey

You hope that, by controlling for some or all of these variables, you might manage to
reduce or even eliminate the bias when estimating the causal relationship between
management training and employee engagement.

Simulated Data

This dataset was adapted from the one used in the study “Estimat‐
ing Treatment Effects with Causal Forests: An Application,” by
Susan Athey and Stefan Wager.

Adjusting with Regression
Before moving on to propensity weighting, let’s use regression to adjust for the con‐
founders. In general, when learning something new, its always a good idea to have
some benchmark that you trust to compare to. Here the idea is to check if the pro‐
pensity weighting estimate is at least inline with the regression one. Now, let’s get to it.

For starters, if you simply compare treated and control groups, this is what you’ll get:

In [2]: import statsmodels.formula.api as smf

        smf.ols("engagement_score ~ intervention",
                data=df).fit().summary().tables[1]
        

coef std err t P>|t| [0.025 0.975]
Intercept –0.2347 0.014 –16.619 0.000 –0.262 –0.207
intervention 0.4346 0.019 22.616 0.000 0.397 0.472

Adjusting with Regression | 143



But then again, this result is probably biased, since the treatment was not entirely
random. To reduce this bias, you can adjust for the covariates you have in your data,
estimating the following model:

engagementi = τTi + θXi + ei,

where X is all the confounders you have plus a constant column for the intercept.
Additionally, gender and role are both categorical variables, so you have to wrap them
in C() inside your OLS formula:

In [3]: model = smf.ols("""engagement_score ~ intervention 
        + tenure + last_engagement_score + department_score
        + n_of_reports + C(gender) + C(role)""", data=df).fit()

        print("ATE:", model.params["intervention"])
        print("95% CI:", model.conf_int().loc["intervention", :].values.T)
        

Out[3]: ATE: 0.2677908576676856
        95% CI: [0.23357751 0.30200421]
        

Notice that the effect estimate here is considerably smaller than the one you got ear‐
lier. This is some indication of positive bias, which means that managers whose
employees were already more engaged are more likely to have participated in the
manager training program. OK, enough with the preamble. Let’s see what propensity
weighting is all about.

Propensity Score
Propensity weighting revolves around the concept of a propensity score, which itself
comes from the realization that you don’t need to directly control for confounders X
to achieve conditional independence Y1, Y0 ⊥ T X. Instead, it is sufficient to con‐
trol for a balancing score that estimates E T X . This balancing score is often the
conditional probability of the treatment, P T X , also called the propensity score, e x .

The propensity score can be viewed as a dimensionality reduction technique. Instead
of conditioning on X, which can be very high dimensional, you can simply condition
on the propensity score in order to block the backdoor paths that flow through X:
Y1, Y0 ⊥ T P x .

There is a formal proof for why this is. It’s not complicated, but a bit beyond the scope
of this book. Here, you can approach the matter in a more intuitive way. The propen‐
sity score is the conditional probability of receiving the treatment, right? So you can
think of it as some sort of function that converts X into the treatment T. The

144 | Chapter 5: Propensity Score

https://oreil.ly/LkYaz


propensity score makes this middle ground between the variable X and the treatment
T. This is what it would look like in a causal graph:

In this graph, if you know what e x  is, X alone gives you no further information
about T. Which means that controlling for e x  works the same way as controlling for
X directly.

Think of it in terms of the manager training program. Treated and nontreated are ini‐
tially not comparable because the managers with more engaged direct reports are
more likely to participate in the training. However, if you take two managers, one
from the treated and one from the control group, but with the same probability of
receiving the treatment, they are comparable. Think about it. If they have the exact
same probability of receiving the treatment, the only reason one of them did it and
the other didn’t is by pure chance. Given the same propensity score, treatment is as
good as random.

Propensity Score Estimation
In an ideal world, you would have the true propensity score e x . You might have this
in the case of conditionally random experiment, where the assignment mechanism is
nondeterministic, but known. However, in most cases, the mechanism that assigns
the treatment is unknown and you’ll need to replace the true propensity score by an
estimation of e x .

Since you have a binary treatment, a good candidate for estimating e x  is using logis‐
tic regression. To fit a logistic regression with statsmodels, you can simply change
the method ols to logit:

In [4]: ps_model = smf.logit("""intervention ~ 
        tenure + last_engagement_score + department_score
        + C(n_of_reports) + C(gender) + C(role)""", data=df).fit(disp=0)
        

Save your estimated propensity score in a data frame; you’ll use it a lot in the follow‐
ing sections, where I’ll show you how to use it and what it is doing:

In [5]: data_ps = df.assign(
            propensity_score = ps_model.predict(df),
        )

        data_ps[["intervention", "engagement_score", "propensity_score"]].head()
        

Propensity Score | 145



intervention engagement_score propensity_score
0 1 0.277359 0.596106
1 1 –0.449646 0.391138
2 1 0.769703 0.602578
3 1 –0.121763 0.580990
4 1 1.526147 0.619976

Propensity Score and ML

Alternatively, you can use machine learning models to estimate the
propensity score. But they require you to be more careful. First,
you must ensure that your ML model outputs a calibrated proba‐
bility prediction. Second, you need to use out-of-fold predictions to
avoid bias due to overfitting. You can use sklearn’s calibration
module for the first task and the cross_val_predict function,
from the model selection module, for the latter.

Propensity Score and Orthogonalization
If you recall from the previous chapter, according to the FLW theorem, linear regres‐
sion also does something very similar to estimating a propensity score. In the debias‐
ing step, it estimates E T X . So, very much like the propensity score estimation, OLS
is also modeling the treatment assignment mechanism. This means you can also use
propensity score e X  inside a linear regression in order to adjust for the confound‐
ers X:

In [6]: model = smf.ols("engagement_score ~ intervention + propensity_score",
                        data=data_ps).fit()
        model.params["intervention"]
        

Out[6]: 0.26331267490277066
        

The estimated ATE you get with this approach is remarkably similar to the one you
got earlier, fitting a linear model with the treatment and confounder X. This is not at
all surprising, as both approaches are simply orthogonalizing the treatment. The only
difference is that OLS uses linear regression to model T, while this propensity score
estimate was obtained from a logistic regression.

Propensity Score Matching
Another popular approach to control for the propensity score is the matching estima‐
tor. This method searches for pairs of units with similar observable characteristics
and compares the outcomes of those who received the treatment to those who did
not. If you have a background in data science, you can think of matching as a simple

146 | Chapter 5: Propensity Score



K-Nearest-Neighbors (KNN) algorithm, where K=1. To start, you fit a KNN model
on the treated units, using the propensity score as the only feature, and use it to
impute Y1 for the control group. Next, you fit a KNN model on the untreated units
and use it to impute Y0 for the treated units. In both cases, the imputed value is sim‐
ply the outcome of the matched unit, where the match is based on the propensity
score:

In [7]: from sklearn.neighbors import KNeighborsRegressor

        T = "intervention"
        X = "propensity_score"
        Y = "engagement_score"

        treated = data_ps.query(f"{T}==1")
        untreated = data_ps.query(f"{T}==0")

        mt0 = KNeighborsRegressor(n_neighbors=1).fit(untreated[[X]],
                                                     untreated[Y])

        mt1 = KNeighborsRegressor(n_neighbors=1).fit(treated[[X]], treated[Y])

        predicted = pd.concat([
            # find matches for the treated looking at the untreated knn model
            treated.assign(match=mt0.predict(treated[[X]])),
            
            # find matches for the untreated looking at the treated knn model
            untreated.assign(match=mt1.predict(untreated[[X]]))
        ])

        predicted.head()
        

department_id intervention engagement_score ... department_size propensity_score match
0 76 1 0.277359 ... 843 0.596106 0.557680
1 76 1 –0.449646 ... 843 0.391138 –0.952622
2 76 1 0.769703 ... 843 0.602578 –0.618381
3 76 1 –0.121763 ... 843 0.580990 –1.404962
4 76 1 1.526147 ... 843 0.619976 0.000354

Once you have a match for each unit, you can estimate the ATE:

ATE = 1
N ∑ Yi − Y jm i Ti + Y jm i − Yi 1 − Ti ,

Propensity Score | 147



where Y jm i  is the match of unit i from the treatment group different from i’s:

In [8]: np.mean((predicted[Y] - predicted["match"])*predicted[T] 
                + (predicted["match"] - predicted[Y])*(1-predicted[T]))
        

Out[8]: 0.28777443474045966
        

Bias of the Matching Estimator
You don’t need to use matching only with the propensity score. Instead, you could
directly match on the raw features X used to construct the propensity score estimate
P T X . However, the matching estimator is biased, and that bias increases with the
dimension of X. With a high dimensionality, the data becomes sparse, and the match‐
ing becomes poorer. Say μ0 X  and μ1 X  are the expected outcome function in the
control and treated group, respectively. The bias is the discrepancy between the
expected outcome and the match’s outcome: μ0 Xi − μ0 X jm  for the treated units
and μ1 X jm − μ1 Xi  for the control units, where X jm are the covariates for the
match.

This means that, if you want to use matching, but avoid its bias, you have to apply a
bias correction term:

ATE = 1
N ∑ Yi − Y jm i − μ0 Xi − μ0 X jm Ti

+ Y jm i − Yi − μ1 X jm − μ1 Xi 1 − Ti ,

where μ1 and μ0 can be estimated with something like linear regression.

To be completely honest, I’m not a huge fan of this estimator, first, because it is
biased, second, because it is difficult to derive its variance, and third, because my
experience in data science has led me to be suspicious of KNN, mostly because it is
very inefficient with high dimensional X. This last problem is not an issue if you only
match on the propensity score, but the first two problems remain. I’m teaching this
method here mostly because it is very famous and you might see it here and there.

See Also

The paper “Why Propensity Scores Should Not Be Used for Match‐
ing,” by King and Nielsen, provides a more technical discussion on
the issue with propensity score matching.

148 | Chapter 5: Propensity Score



Inverse Propensity Weighting
There is another widely used approach for utilizing propensity scores that I find pref‐
erable—inverse propensity weighting (IPW). By reweighting the data based on the
inverse probability of treatment, this method can make the treatment appear to have
been randomly assigned in the reweighted data. To do this, we reweight the sample by
1/P T = t X  in order to create a pseudo-population that approximates what would
have happened if everyone had received the treatment t:

E Yt = E � T = t Y
P T = t X

Once again, the proof for this is not complicated, but beside the point here. So let’s
stick with intuition. Suppose you want to know the expectation of Y1, that is, of what
would be the average engagement had all managers taken the training. To get that,
you take all those who are treated and scale them by the inverse probability of getting
the treatment. This puts a high weight on those with very low probability of treat‐
ment, but that nonetheless got it. You are essentially up-weighting rare treatment
examples.

This makes sense, right? If a treated individual has a low probability of treatment, that
individual looks a lot like the untreated. This must be interesting! This treated unit
that looks like the untreated will probably be very informative of what would happen
to the untreated, had they been treated, Y1 T = 0. That is why you give a high weight
to that unit. Same thing for the control. If a control unit looks a lot like the treated
group, it is probably a good estimate for Y0 T = 1, so you give it more weight.

Here is what this process looks like with the management training data, with weights
depicted as the size of each dot:

Propensity Score | 149



Notice how those managers who got the training, T = 1, have a high weight when
e X  is low. You are giving high importance to the treated that look like the untreated.
Conversely, the untreated have a high weight when e X  is high, or when P T = 0 X
is low. Here you are giving high importance to the untreated that look like the treated.

If you can use the propensity score to recover the average potential outcome, it also
means you can use it to recover the ATE:

ATE = E � T = 1 Y
P T = 1 X − E � T = 0 Y

P T = 0 X

Both expectations can be estimated from data with very simple code:

In [9]: weight_t = 1/data_ps.query("intervention==1")["propensity_score"]
        weight_nt = 1/(1-data_ps.query("intervention==0")["propensity_score"])
        t1 = data_ps.query("intervention==1")["engagement_score"] 
        t0 = data_ps.query("intervention==0")["engagement_score"] 

        y1 = sum(t1*weight_t)/len(data_ps)
        y0 = sum(t0*weight_nt)/len(data_ps)

        print("E[Y1]:", y1)
        print("E[Y0]:", y0)
        print("ATE", y1 - y0)
        

Out[9]: E[Y1]: 0.11656317232946772
        E[Y0]: -0.1494155364781444
        ATE 0.2659787088076121
        

Using this approach, the ATE is once again smaller than the one you got naively, not
adjusting for X. Moreover, this result looks pretty similar to the one you got by using
OLS, which is a good check to make sure you didn’t do anything wrong. It is also
worth noticing that the ATE expression can be simplified to the following:

ATE = E Y T − e x
e x 1 − e x

Sure enough, it produces the exact same result as before:

In [10]: np.mean(data_ps["engagement_score"] 
                 * (data_ps["intervention"] - data_ps["propensity_score"]) 
                 / (data_ps["propensity_score"]*(1-data_ps["propensity_score"])))
         

Out[10]: 0.26597870880761226
         

150 | Chapter 5: Propensity Score



Regression and IPW
The preceding formula is very neat because it also gives you some insight into how
IPW compares to regression. With regression, you are recovering the treatment effect
with

τols = E Y T − E T X
E Var T X .

With that in mind, recall that the variance of a Bernoulli variable with probability p is
simply p 1 − p . Hence, the IPW is recovering the treatment effect with

τipw = E Y T − E T X
Var T X .

Notice the similarity? To make it more transparent, since 1/E Var X T  is a con‐
stant, you can move it inside the expectation and rewrite the regression estimator as
follows:

τols = E Y T − E T X
E Var T X = E Y T − E T X

Var T X * W

with W = Var T X /E Var T X .

Now, the thing inside the expectation in the IPW estimator identifies the effect
(CATE) in the groups defined by X. So, the difference between IPW and OLS is the
first weights each sample by 1, while regression weights the group effects by the con‐
ditional treatment variance. This is in line with what you learned in the previous
chapter, about regression upweighting effects where the treatment varies a lot. So,
even though regression and IPW look different, they are doing almost same thing, up
to the weighting point.

Variance of IPW
Unfortunately, computing the standard error for IPW is not as straightforward as
with linear regression. The most straightforward way to obtain a confidence interval
around your IPW estimate is by using the bootstrap method. With this method, you
will repeatedly resample the data with replacement to obtain multiple IPW estima‐
tors. You can then calculate the 2.5th and 97.5th percentiles of these estimates to
obtain a 95% confidence interval.

To code that, let’s first wrap your IPW estimation into a reusable function. Notice
how I’m replacing statsmodels with sklearn. The logit function in statsmodels is

Propensity Score | 151



slower than the logistic regression model from sklearn, so this change will save you
some time. Also, since you probably don’t want to lose the convenience of formulas
you get from statsmodels, I’m using patsy’s dmatrix function. This function engi‐
neers a feature matrix based on an R-style formula, like the ones you’ve been using
so far:

In [11]: from sklearn.linear_model import LogisticRegression
         from patsy import dmatrix

         # define function that computes the IPW estimator
         def est_ate_with_ps(df, ps_formula, T, Y):
             
             X = dmatrix(ps_formula, df)
             ps_model = LogisticRegression(penalty="none",
                                           max_iter=1000).fit(X, df[T])
             ps = ps_model.predict_proba(X)[:, 1]
             
             # compute the ATE
             return np.mean((df[T]-ps) / (ps*(1-ps)) * df[Y]) 
         

Probability Prediction

By default, sklearn’s classifiers output 0 or 1 predictions following
the logic P Y X > 0.5. Since you want your model to output a
probability, you’ll have to use the predict_proba method. This
method outputs a two column matrix, where the first column is
P Y = 0 X  and the second column, P Y = 1 X . You only want
the second one, which in this case is P T = 1 X . Hence, the index‐
ing [:, 1].

Here is how you would use this function:

In [12]: formula = """tenure + last_engagement_score + department_score
         + C(n_of_reports) + C(gender) + C(role)"""
         T = "intervention"
         Y = "engagement_score"

         est_ate_with_ps(df, formula, T, Y)
         

Out[12]: 0.2659755621752663
         

Now that you have the code to compute ATE inside a neat function, you can apply it
inside a bootstrap procedure. To speed things up, I’m also going to run the resam‐
pling in parallel. All you have to do is call the data frame method .sample(frac=1,
replace=True) to get a bootstrap sample. Then, pass this sample to the function you
created earlier. To make the bootstrap code more generic, one of its arguments is an

152 | Chapter 5: Propensity Score



estimator function, est_fn, which takes a data frame and returns a single number as
an estimate. I’m using four jobs, but feel free to set this to the number of cores in your
computer.

Run this estimator multiple times, one in each bootstrap sample, and you’ll end up
with an array of estimates. Finally, to get the 95% CI, just take the 2.5 and 97.5 per‐
centiles of that array:

In [13]: from joblib import Parallel, delayed # for parallel processing

         def bootstrap(data, est_fn, rounds=200, seed=123, pcts=[2.5, 97.5]):
             np.random.seed(seed)
             
             stats = Parallel(n_jobs=4)(
                 delayed(est_fn)(data.sample(frac=1, replace=True))
                 for _ in range(rounds)
             )
             
             return np.percentile(stats, pcts)
         

I tend to lean toward functional programming in my code, which might not be famil‐
iar to everyone. For this reason, I’ll add notes explaining some of the functional pat‐
terns that I’m using, starting with the partial function.

Partial
partial takes in a function and some of its arguments and returns another function
just like the input one, but with the arguments that you passed already applied:

def addNumber(x, number):
    return x + number
 
add2 = partial(addNumber, number=2)
add4 = partial(addNumber, number=4)
 
add2(3)
>>> 5
 
add4(3)
>>> 7

I’ll use partial to take the est_ate_with_ps function and partially apply the for‐
mula, the treatment, and the outcome arguments. This will give me a function that
has a data frame as its only input and that outputs the $ATE$ estimate. I can then pass
this function as the est_fn argument to the bootstrap function I created earlier:

In [14]: from toolz import partial

Propensity Score | 153



         print(f"ATE: {est_ate_with_ps(df, formula, T, Y)}")

         est_fn = partial(est_ate_with_ps, ps_formula=formula, T=T, Y=Y)
         print(f"95% C.I.: ", bootstrap(df, est_fn))
         

Out[14]: ATE: 0.2659755621752663
         95% C.I.:  [0.22654315 0.30072595]
         

This 95% is about as wide as the one you got earlier, with linear regression. It’s impor‐
tant to realize that the variance in the propensity score estimator will be large if you
have big weights. Big weights means that some units have a big impact in the final
estimate. A few units having a big impact in the final estimate is precisely what causes
the variance.

You’ll have big weights if you have few control units in the region with high propen‐
sity score or a few treated units in the region with low propensity score. This will
cause you to have few units to estimate the counterfactuals Y0 T = 1 and Y1 T = 0,
which might give you a very noisy result.

PRACTICAL EXAMPLE

Causal Contextual Bandits
Contextual bandits is a flavor of reinforcement learning where the goal is to learn an
optional decision-making policy. It merges a sampling component, which balances
gathering data in unexplored regions with allocating the best treatment, and an esti‐
mation component, which tries to figure out the best treatment with the available
data.

The estimation component can be easily framed as a causal inference problem, where
you wish to learn the best treatment assignment mechanism, where best is defined in
terms of the expected value of a desired outcome Y you wish to optimize. Since the
algorithm goal is to allocate the treatment in an optimal manner, the data it gathers is
confounded (not random). This is why a causal approach to contextual bandits can
yield significant improvements.

If the decision-making process is probabilistic, you can store the probability of
assigning each treatment, which is exactly the propensity score e x . Then, you can
use this propensity score to reweight the past data, where the treatment has already
been selected and the outcome is already observed. This reweighted data should be
unconfounded and hence much easier to learn what is the optimal treatment.

154 | Chapter 5: Propensity Score



Stabilized Propensity Weights
Weighting the treated samples by 1/P T = 1 X  creates a pseudo-population the
same size as the original one, but as though everyone was treated. This means that the
sum of the weights is about the same as the original sample size. Likewise, weighting
the control by 1/P T = 0 X  creates a pseudo-population that behaves as though
everyone had the control.

If you come from a machine learning background, you might recognize IPW as an
application of importance sampling. With importance sampling, you have data from
an origin distribution q x  but want to sample from a target distribution p x . To do
that, you can reweight the data from q x  by p x /q x . Bringing this to an IPW con‐
text, weighting the treated by 1/P T = 1 X  essentially means you are taking data that
came from P T = 1 X —which is biased if X also causes Y—and reconstructing
P T = 1 = 1, where the treatment probability does not depend on X, since it is just 1.
This also explains why the resulting re-weighted sample behaves as if everyone in the
original sample was treated.

Another way to see that is to notice how the sum of the weights for both the treat‐
ment and the untreated are pretty close to the original sample size:

In [15]: print("Original Sample Size", data_ps.shape[0])
         print("Treated Pseudo-Population Sample Size", sum(weight_t))
         print("Untreated Pseudo-Population Sample Size", sum(weight_nt))
         

Out[15]: Original Sample Size 10391
         Treated Pseudo-Population Sample Size 10435.089079197916
         Untreated Pseudo-Population Sample Size 10354.298899788304
         

This is fine, as long as you don’t have weights that are too large. But if a treatment is
very unlikely, P T X  can be tiny, which might cause you some computational issues.
A simple solution is to stabilize the weights using the marginal probability of treat‐
ment, P T = t :

w = P T = t
P T = t X

With these weights, a treatment with low probability won’t have massive weights
because the small denominator will be balanced by the also small numerator. This
won’t change the results you got earlier, but it is more computationally stable.

Moreover, the stabilized weights reconstruct a pseudo-population where the effective
size (sum of the weights) of both treated and control matches that of the original
treated and control groups, respectively. Again, making a parallel with importance

Propensity Score | 155



sampling, with stabilized weights, you are coming from a distribution where the
treatment depends on X, P T = t X , but reconstructing the marginal P T = t :

In [16]: p_of_t = data_ps["intervention"].mean()

         t1 = data_ps.query("intervention==1")
         t0 = data_ps.query("intervention==0")

         weight_t_stable = p_of_t/t1["propensity_score"]
         weight_nt_stable = (1-p_of_t)/(1-t0["propensity_score"])

         print("Treat size:", len(t1))
         print("W treat", sum(weight_t_stable))

         print("Control size:", len(t0))
         print("W treat", sum(weight_nt_stable))
         

Out[16]: Treat size: 5611
         W treat 5634.807508745978
         Control size: 4780
         W treat 4763.116999421415
         

Again, this stabilization keeps the same balancing properties of the original propen‐
sity score. You can verify that it yields the exact same ATE estimate as you had before:

In [17]: nt = len(t1)
         nc = len(t0)

         y1 = sum(t1["engagement_score"]*weight_t_stable)/nt
         y0 = sum(t0["engagement_score"]*weight_nt_stable)/nc

         print("ATE: ", y1 - y0)
         

Out[17]: ATE:  0.26597870880761176
         

Pseudo-Populations
I’ve mentioned pseudo-populations already, but understanding them better will help
you appreciate how IPW removes bias. Let’s first think about what bias means from
the perspective of P T X . If the treatment was randomly assigned with probability,
say, 10%, you know that the treatment would not depend on X, or that
P T X = P T = 10%. So, if the treatment is independent from X, you would not
have confounding bias flowing through X and no adjustment would be needed. If you
do have this sort of bias, then some units have a higher chance of getting the treat‐
ment. For example, it could be that very passionate managers, who already have a
very engaged team, are more likely to take the training (have higher e T ) than the
managers whose teams are not so engaged.

156 | Chapter 5: Propensity Score



If you plot the distribution of e x  by treatment status, since managers don’t have the
same chance of taking the training (treatment is not random), treated individuals will
have higher e x . You can see that in the plot on the left in the following figure, where
the treated distribution for e x  is a bit shifted to the right:

Contrast this with the plot on the right. Here, in the low e X  region, treated are up-
weighted and control, down-weighted. Similarly, when e X  is high, treated units are
down-weighted and control, up-weighted. These movements make the two distribu‐
tions overlap. The fact that they do means that, on the weighted data, treated and
control have the same chance of getting both the treatment or the control. In other
words, treatment assignment looks as good as random (assuming no unobserved
confounders, of course).

This also sheds some light on what IPW is doing. By taking the treated’s outcome,
Y T = 1, and up-weighting those where e X  is low and down-weighting those
where e X , you are trying to figure out what Y1 T = 0 would look like. A similar
argument can be made to show how you are also trying to learn Y0 T = 1 by
reweighting the control sample by 1/ 1 − P T = 1 .

Selection Bias
The example used here is meant to show how propensity score weighting can be used
to adjust for common causes, making the treatment similar to the control and vice
versa. That is, you saw how to use propensity score weighting as a way to account and
control for confounding bias. However, IPW can also be used to adjust for selection
issues. In fact, the IPW estimator was initially used in this context, as presented by
Horvitz and Thompson in 1952. For this reason, you might see the IPW estimator as
the Horvitz-Thompson estimator.

To give an example, suppose you want to know the satisfaction of your customers
with your app. So you send out a survey asking them to rate your product on a 1-to-5
scale. Naturally, some customers don’t respond. But the issue with this is that it can

Propensity Score | 157



bias your analysis. If the nonrespondents are mostly unsatisfied customers, the result
you’ll get back from the survey will be an artificially inflated rate.

To adjust for that you can estimate the probability of responding, R, given customer’s
covariates (like age, income, app usage, etc.), P R = 1 X . Then, you can reweight
those who responded by 1/P R = 1 . This will up-weight the respondents that look
like the nonrespondents (have low P R = 1 ). With this, an individual who answered
the survey will not only account for himself, but for other individuals like him, creat‐
ing a pseudo-population that should behave like the original one, but as if everyone
responded to the survey.

Sometimes (but hopefully not many), you’ll have to face both confounding and selec‐
tion bias together. In this case, you can use the product of the weights for both selec‐
tion and confounding. Since this product can be quite small, I recommend stabilizing
the confounding bias weights with the marginal probability P T = t :

W = P T = t
P R = 1 X P T = t X

Bias-Variance Trade-Off
As the naive data scientist that I was, when I learned about propensity scores I
thought “Oh boy! This is huge! I can transform a causal inference problem into a pre‐
diction problem. If I can just predict e x , I’m golden!” Unfortunately, it is not that
simple. In my defense, that is an easy mistake to make. At first glance, it does seem
that the better your estimate of the treatment assignment mechanism, the better your
causal estimates will be. But that is simply not the case.

Remember when you learned about noise-inducing controls, in Chapter 4? The same
logic applies here. If you have a covariate Xk that is a very good predictor of T, this
variable will give you a very accurate model of e x . But if that same variable does not
cause Y, it is not a confounder and it will only increase the variance of your IPW esti‐
mate. To see this, think about what would happen if you have a very good model of T.
This model would output a very high e x  for all treated units (as it correctly predicts
that they are treated) and a very low e x  for all the control units (as it correctly pre‐
dicts that they are untreated). This would leave you no treated units with low e x  to
estimate Y1 T = 0 and no control units with high e x  to estimate Y0 T = 1.

In contrast, think about what would happen if the treatment was randomized. In this
case, the predictive power of e x  should be zero! In the managers training example,
under randomization, managers with higher e x  would not be more likely to partici‐
pate in the training than those with lower e x . Still, even with no predictive power,
this is the best situation you’ll get in terms of estimating the treatment effect.

158 | Chapter 5: Propensity Score



As you can see, there is also a bias-variance trade-off when it comes to IPW. In gen‐
eral, the more precise the propensity score model, the lower the bias. However, a very
precise model for e x  will generate a very imprecise effect estimate. This means you
have to make your model precise enough to control for the bias, but not too much, or
you’ll run into variance issues.

Trimming

One way to lower the variance of the IPW estimator is to trim the
propensity score to be always above a certain number—say, 1%—to
avoid weights that are too big—say, above 100. Equivalently, you
can directly clip the weights to never be too large. The IPW with
clipped weights is no longer unbiased, but it might have lower
mean square error if the variance reduction is expressive.

Positivity
The bias–variance trade-off can also be viewed in the light of two causal inference
assumptions: conditional independence (unconfoundedness) and positivity. The
more precise you make your model for e x , say, by adding more variables to it, the
more you go in the direction of making the CIA hold. However, you also make posi‐
tivity less plausible for the reasons you already saw: you’ll concentrate the treatment
in a low e x  region, far away from the controls and vice versa.

The IPW reconstruction is only possible if you have samples to reweight. If there are
no treated samples in the region with low propensity score (high chance of being the
control), there is no amount of reweight you can do to reconstruct Y1 in that region.
This is what positivity violations look like in terms of IPW. Also, even if positivity is
not entirely violated, but some units have very small or large propensity scores, IPW
will suffer from high variance.

To see this on a more intuitive level, consider the following simulated data. Here, the
true ATE is 1. However, x confounds the relationship between T and Y. The higher
the X, the smaller the Y, but the higher the chance of receiving the treatment. Hence,
a naive comparison in the average outcome between treated and control will be
downward biased and can even be negative:

In [18]: np.random.seed(1)

         n = 1000
         x = np.random.normal(0, 1, n)
         t = np.random.normal(x, 0.5, n) > 0

         y0 = -x
         y1 = y0 + t  # ate of 1

         y = np.random.normal((1-t)*y0 + t*y1, 0.2)

Propensity Score | 159



         df_no_pos = pd.DataFrame(dict(x=x,t=t.astype(int),y=y))

         df_no_pos.head()
         

x t y
0 1.624345 1 –0.526442
1 –0.611756 0 0.659516
2 –0.528172 0 0.438549
3 –1.072969 0 0.950810
4 0.865408 1 –0.271397

If you estimate the propensity score in this data, some units (with high x) have a pro‐
pensity score very close to 1, meaning it is almost impossible for them to get the con‐
trol. In a similar manner, some units have almost zero chance of getting the treatment
(those with low x). You can see this in the following image’s middle plot. Notice the
lack of overlap between the treated and untreated propensity score distribution. This
is very troublesome, as it means that a huge chunk of the control distribution is con‐
densed where e x  is close to zero, but you have no treated unit to reconstruct that
region. As a consequence, you end up lacking a good estimate for Y1 T = 0 for a good
portion of the data:

Additionally, as you can see in the third plot, the control units to the right (high e x )
have massive weights. A similar thing can be said about the treated units to the left
(small e x ). As you know by now, these huge weights will generally increase the var‐
iance of the IPW estimator.

Combine these two problems—high variance and positivity violation—and you’ll see
how the IPW estimator fails to recover the ATE of 1 in this data:

160 | Chapter 5: Propensity Score



In [19]: est_fn = partial(est_ate_with_ps, ps_formula="x", T="t", Y="y")
         print("ATE:",  est_fn(df_no_pos))
         print(f"95% C.I.: ", bootstrap(df_no_pos, est_fn))
         

Out[19]: ATE: 0.6478011810615735
         95% C.I.:  [0.41710504 0.88840195]
         

It’s important to note that this isn’t simply a problem of high variance. Sure, the 95%
CI of this estimator is large, but it is more than that. Specifically, the upper end of the
confidence interval still appears to be significantly lower than the true ATE of 1.

Lack of positivity is a problem not only for the IPW estimator. However, IPW can be
more transparent about positivity issues. For instance, if you plot the distribution of
the propensity score (the plot in the middle of the preceding image) for the treatment
variants, you can visually check if you have decent levels of positivity.

In fact, let’s contrast the IPW estimator with linear regression. You know that regres‐
sion will not be very transparent about positivity violations. Instead, it will extrapo‐
late to the regions where you have no data whatsoever. In some very lucky situations,
this might even work. For instance, in this very simple simulated data, regression
manages to recover the ATE of 1, but only because it correctly extrapolates both Y0
and Y1 to the treated and control region where there is no actual data:

In [20]: smf.ols("y ~ x + t", data=df_no_pos).fit().params["t"]
         

Out[20]: 1.0165855487679483
         

In a sense, regression can replace the positivity assumption for a parametric assump‐
tion on E Y T, X , which is essentially an assumption about smoothness in the
potential outcomes. If the linear model has a good fit to the conditional expectation,
it will manage to recover the ATE even in regions where positivity doesn’t hold. In
contrast, IPW makes no assumptions on the shape of the potential outcome. As a
result, it fails when extrapolation is needed.

Design- Versus Model-Based Identification
You’ve just learned how to use propensity score weighting to estimate the treatment
effect. Along with regression, this already gives two—and the most important—meth‐
ods to debias nonexperimental data. But which one should you use and when?
Regression or IPW?

Implicit in this choice is the discussion of model-based versus design-based identifica‐
tion. Model-based identification involves making assumptions in the form of a model
of the potential outcomes conditioned on the treatment and additional covariates.

Design- Versus Model-Based Identification | 161



From this perspective, the goal is to impute the missing potential outcomes required
for estimation. In contrast, design-based identification is all about making assump‐
tions about the treatment assignment mechanism. In Chapter 4, you saw how regres‐
sion fits both kinds of strategy: from the perspective of orthogonalization, it is
design-based; from the perspective of an estimator for the potential outcome model,
it is model-based. In this chapter, you learned about IPW, which is purely design-
based, and in later chapters, you’ll learn about Synthetic Control, which is purely
model-based.

So, in order to choose between a design- or model-based identification, you need to
ask yourself which type of assumption you are more comfortable with. Do you have a
good understanding of how the treatment was assigned? Or do you have a better
chance in correctly specifying a potential outcome model?

Doubly Robust Estimation
The good news is that, when in doubt, you can just choose both! Doubly robust (DR)
estimation is a way of combining both model- and design-based identification, hop‐
ing that at least one of them is correct. Here, let’s see how to combine propensity
score and linear regression in a way that only one of them needs to be rightly speci‐
fied. Let me show you a popular DR estimator and tell you why it is awesome.

Quite generally, a doubly robust estimator for the counterfactual Yt can be written as
follows:

μt
DR m, e = 1

N ∑m X + 1
N ∑ T

e x Y − m X

where m X  is a model for E Yt X  (linear regression, for example) and e X  is a
propensity score model for P T X . Now, the reason why this is amazing—and why it
is called doubly robust—is that it only requires one of the models, m X  or e X , to
be correctly specified.

For example, suppose that the propensity score model was wrong, but the outcome
model m X  was correct. In this case, the second term would converge to zero, since
E Y = m X = 0. You would be left with the first term, which is just the outcome
model, which is correct.

Next, let’s consider a scenario where the outcome model is incorrect, but the propen‐
sity score model is accurate. To explore this possibility, you can perform some alge‐
braic manipulation on the preceding formula and rewrite it as follows:

μt
DR m, e = 1

N ∑ TY
e X + 1

N ∑ T − e X
e X m X

162 | Chapter 5: Propensity Score



I hope this makes it more clear. If the propensity model is correct, T − e X  would
converge to zero. That would leave you only the first term, which is the IPW estima‐
tor. And since the propensity model is correct, this estimator would be too. That’s the
beauty of this doubly robust estimator: it converges to whichever model is correct.

The preceding estimator would estimate the average counterfactual outcome Yt. If
you want to estimate the average treatment effect, all you have to do is put two of
those estimators together, one for E Y0  and one for E Y1 , and take the difference:

ATE = μ1
DR m, e − μ0

DR m, e

Having understood the theory behind DR, it’s time to code it up. The models e  and m
don’t have to be a logistic and linear regression, respectively, but I think those are very
good candidates for a starter. Once again, I’ll begin by using the R-style formula from
patsy’s dmatrix to engineer my covariate matrix X. Next, I’m using logistic regres‐
sion to fit the propensity model and get e X . Then comes the output model part. I’m
fitting one linear regression per treatment variant, giving me two of them—one for
the treated and one for the control. Each model is fitted on the subset of the data of
its treatment variant, but makes predictions for the entire dataset. For example, the
control model fits only in the data where T = 0, but it predicts everything. This pre‐
diction is an estimate for Y0.

Finally, I’m combining the two models to form the DR estimator for both E Y0  and
E Y1 . This is simply the translation of the formula you just saw into code:

In [21]: from sklearn.linear_model import LinearRegression

         def doubly_robust(df, formula, T, Y):
             X = dmatrix(formula, df)
             
             ps_model = LogisticRegression(penalty="none",
                                           max_iter=1000).fit(X, df[T])
             ps = ps_model.predict_proba(X)[:, 1]
             
             m0 = LinearRegression().fit(X[df[T]==0, :], df.query(f"{T}==0")[Y])
             m1 = LinearRegression().fit(X[df[T]==1, :], df.query(f"{T}==1")[Y])
             
             m0_hat = m0.predict(X)
             m1_hat = m1.predict(X)

             return (
                 np.mean(df[T]*(df[Y] - m1_hat)/ps + m1_hat) -
                 np.mean((1-df[T])*(df[Y] - m0_hat)/(1-ps) + m0_hat)
             )
         

Doubly Robust Estimation | 163



Let’s see how it performs in the manager training data. You can also pass it to your
bootstrap function to construct a confidence interval for the DR ATE estimate:

In [22]: formula = """tenure + last_engagement_score + department_score
         + C(n_of_reports) + C(gender) + C(role)"""
         T = "intervention"
         Y = "engagement_score"

         print("DR ATE:", doubly_robust(df, formula, T, Y))

         est_fn = partial(doubly_robust, formula=formula, T=T, Y=Y)
         print("95% CI", bootstrap(df, est_fn))
         

Out[22]: DR ATE: 0.27115831057931455
         95% CI [0.23012681 0.30524944]
         

As you can see, the result is pretty in line with both the IPW and the regression esti‐
mator you saw earlier. This is good news, as it means the DR estimator is not doing
anything crazy. But honestly, it is kind of boring and it doesn’t exactly show the power
of DR. So, to better understand why DR is so interesting, let’s craft two new examples.
They will be fairly simple, but very illustrative.

Treatment Is Easy to Model
The first example is one where the treatment assignment is fairly easy to model, but
the outcome model is a bit more complicated. Specifically, the treatment follows a
Bernoulli distribution with probability given by the following propensity score:

e x = 1
1 + e− 1 + 1 . 5x

In case you didn’t recognize, this is exactly the kind of form the logistic regression
assumes, so it should be pretty easy to estimate it. Moreover, since P T X  is easy to
model, the IPW score should have no problem finding the true ATE here, which is
close to 2. In contrast, since the outcome Y is a bit trickier, a regression model might
run into some trouble:

In [23]: np.random.seed(123)

         n = 10000
         x = np.random.beta(1,1, n).round(2)*2
         e = 1/(1+np.exp(-(1+1.5*x)))
         t = np.random.binomial(1, e)

         y1 = 1
         y0 = 1 - 1*x**3
         y = t*(y1) + (1-t)*y0 + np.random.normal(0, 1, n)

164 | Chapter 5: Propensity Score



         df_easy_t = pd.DataFrame(dict(y=y, x=x, t=t))

         print("True ATE:", np.mean(y1-y0))
         

Out[23]: True ATE: 2.0056243152
         

The following two plots show what this data looks like. It is interesting to notice the
effect heterogeneity in the data, which is easy to see in the second plot. Notice how
the effect is 0 for low values of x and it increases nonlinearly as x increases. This sort
of heterogeneity is oftentimes hard for regression to get it right:

Now, let’s see how regression does in this data. Here I’m once again fitting m1 and m0
separately and estimating the ATE as the average of the different predictions in the
entire dataset, N−1∑ m1 x − m0 X :

In [24]: m0 = smf.ols("y~x", data=df_easy_t.query("t==0")).fit()
         m1 = smf.ols("y~x", data=df_easy_t.query("t==1")).fit()
         regr_ate = (m1.predict(df_easy_t) - m0.predict(df_easy_t)).mean()

         print("Regression ATE:", regr_ate)
         

Out[24]: Regression ATE: 1.786678396833022
         

Doubly Robust Estimation | 165



As expected, the regression model fails to recover the true ATE of 2. If you plot the
predicted values against the original data you can see why. Regression fails to capture
the curvature in the control group:

To be clear, this doesn’t mean it is not possible to correctly estimate the ATE with
regression. If you knew about the true curvature of the data, you could pretty much
model it correctly:

In [25]: m = smf.ols("y~t*(x + np.power(x, 3))", data=df_easy_t).fit()
         regr_ate = (m.predict(df_easy_t.assign(t=1))
                     - m.predict(df_easy_t.assign(t=0))).mean()

         print("Regression ATE:", regr_ate)
         

Out[25]: Regression ATE: 1.9970999747190072
         

But, of course, in reality, you don’t really know how the data was generated. So, more
likely than not, regression would have failed you here. In contrast, let’s see how IPW
does. Again, since it is pretty easy to model the treatment assignment, you should
expect IPW to perform quite well on this data:

In [26]: est_fn = partial(est_ate_with_ps, ps_formula="x", T="t", Y="y")
         print("Propensity Score ATE:", est_fn(df_easy_t))
         print("95% CI", bootstrap(df_easy_t, est_fn))
         

Out[26]: Propensity Score ATE: 2.002350388474011
         95% CI [1.80802227 2.22565667]
         

Notice how IPW pretty much nails the correct ATE.

166 | Chapter 5: Propensity Score



Finally, the moment you’ve been waiting for, let’s see the DR estimate in action.
Remember, DR requires one of the models—P T X  or E Yt X —to be correct, but
not necessarily both. In this data, the model for P T X  will be correct, but the model
for E Yt X  will be wrong:

In [27]: est_fn = partial(doubly_robust, formula="x", T="t", Y="y")
         print("DR ATE:", est_fn(df_easy_t))
         print("95% CI", bootstrap(df_easy_t, est_fn))
         

Out[27]: DR ATE: 2.001617934263116
         95% CI [1.87088771 2.145382]
         

As expected, the DR performs quite well here, also recovering the true ATE. But there
is more. Notice how the 95% CI is smaller than that of pure IPW estimate, meaning
the DR estimator is more precise here. This simple example shows how DR can per‐
form well when P T X  is easy to model even if it gets E Yt X  wrong. But what
about the other way around?

Outcome Is Easy to Model
In this next simple yet illustrative example, the complexity is in P T X  rather than
E Yt X . Notice the nonlinearity in P T X , while the outcome function is simply
linear. Here, the true ATE is –1:

In [28]: np.random.seed(123)

         n = 10000
         x = np.random.beta(1,1, n).round(2)*2
         e = 1/(1+np.exp(-(2*x - x**3)))
         t = np.random.binomial(1, e)

         y1 = x
         y0 = y1 + 1 # ate of -1
         y = t*(y1) + (1-t)*y0 + np.random.normal(0, 1, n)

         df_easy_y = pd.DataFrame(dict(y=y, x=x, t=t))

         print("True ATE:", np.mean(y1-y0))
         

Out[28]: True ATE: -1.0
         

Doubly Robust Estimation | 167



The same kind of plot from before can be used to show the complex functional form
for P T X  and the simplicity of E Yt X :

With this data, since the propensity score is relatively complex to model, IPW does
not manage to recover the true ATE:

In [29]: est_fn = partial(est_ate_with_ps, ps_formula="x", T="t", Y="y")
         print("Propensity Score ATE:", est_fn(df_easy_y))
         print("95% CI", bootstrap(df_easy_y, est_fn))
         

Out[29]: Propensity Score ATE: -1.1042900278680896
         95% CI [-1.14326893 -1.06576358]
         

But regression manages to get it precisely right:

In [30]: m0 = smf.ols("y~x", data=df_easy_y.query("t==0")).fit()
         m1 = smf.ols("y~x", data=df_easy_y.query("t==1")).fit()
         regr_ate = (m1.predict(df_easy_y) - m0.predict(df_easy_y)).mean()

         print("Regression ATE:", regr_ate)
         

Out[30]: Regression ATE: -1.0008783612504342
         

Once again, because DR only needs one of the models to be correctly specified, it also
manages to recover the true ATE here:

In [31]: est_fn = partial(doubly_robust, formula="x", T="t", Y="y")
         print("DR ATE:", est_fn(df_easy_y))
         print("95% CI", bootstrap(df_easy_y, est_fn))
         

Out[31]: DR ATE: -1.0028459347805823
         95% CI [-1.04156952 -0.96353366]
         

168 | Chapter 5: Propensity Score



I hope these two examples made it more clear why doubly robust estimation can be
very interesting. The bottom line is that it gives you two shots at being correct. In
some cases, it’s hard to model P T X , but easy to model E Yt X . In others, the
reverse might be true. Regardless, as long as you can model one of them correctly,
you can combine a model for P T X  and a model for E Yt X  in a way that only one
of them needs to be correct. This is the true power of the doubly robust estimator.

See Also

The DR estimator covered here is only one of the many out there.
Just to give some examples, you could take the DR estimator cov‐
ered in this chapter but fit the regression model with weights set to
e x . Or, you could add e x  to the regression model. Interestingly,
linear regression alone is a DR estimator that models the treatment
as e x = βX. It is not a very good DR estimator, since βX is not
bounded between 0 and 1, as a probability model should be, but it
is nonetheless a DR estimator. To learn more about other DR esti‐
mators, check out the excellent discussion in “Comment: Perfor‐
mance of Double-Robust Estimators When ‘Inverse Probability’
Weights Are Highly Variable,” 2008, by Robins et al.

Generalized Propensity Score for Continuous Treatment
Until now, this chapter has only shown how to use propensity scores for discrete
treatment. There is a pretty good reason for that. Continuous treatments are way
more complicated to deal with. So much so that I would say that causal inference as a
science doesn’t have a very good answer on how to deal with them.

In Chapter 4, you managed to get away with continuous treatment by assuming a
functional form for the treatment response. Something like y = a + bt (linear form)
or y = a + b t (square root form), which you could then estimate with OLS. But
when it comes to propensity weighting, there is no such thing as a parametric
response function. The potential outcomes are estimated nonparametrically, by
reweighting and taking averages. When T is continuous, there exist infinitely many
potential outcomes Yt. Furthermore, since the probability of a continuous variable is
always zero, it is not feasible to estimate P T = t X  in this scenario.

The simplest way out of these issues is to discretize the continuous treatment into a
coarser version that can then be treated as discrete. But there is another way out,
which is to use the generalized propensity score. If you make some changes to the
traditional propensity score, you’ll be able to accommodate any type of treatment. To
see how this would work, consider the following example.

Generalized Propensity Score for Continuous Treatment | 169



A bank wants to know how a loan’s interest rates affect the duration (in months) that
the customer chooses to pay back that loan. Intuitively speaking, the effect of interest
on the duration should be negative, since people like to pay back high-rate loans as
fast as possible to avoid paying too much on interest.

To answer this question, the bank could randomize the interest rate, but this would
be costly, both in money and in time. Instead, it wants to use the data it already has.
The bank knows that interest rates were assigned by two machine learning models:
ml_1 and ml_2. Additionally, since the bank’s data scientists were very smart, they
added a random Gaussian noise to the interest rate decision-making process. This
ensures that the policy is nondeterministic and that the positivity assumption is not
violated. The observational (nonrandomized) interest data, along with information
on the confounders ml_1 and ml_2 and the outcome duration is stored in the
df_cont_t data frame:

In [32]: df_cont_t = pd.read_csv("./data/interest_rate.csv")

         df_cont_t.head()
         

ml_1 ml_2 interest duration
0 0.392938 0.326285 7.1 12.0
1 –0.427721 0.679573 5.6 17.0
2 –0.546297 0.647309 11.1 12.0
3 0.102630 –0.264776 7.2 18.0
4 0.438938 –0.648818 9.5 19.0

Your task is to unbias the relationship between interest rate and duration, adjusting
for ml_1 and ml_2. Notice that, if you estimate the treatment effect naively, not adjust‐
ing for anything, you’ll find a positive treatment effect. As discussed already, this
makes no business sense, so this result is probably biased:

In [33]: m_naive = smf.ols("duration ~ interest", data=df_cont_t).fit()
         m_naive.summary().tables[1]
         

coef std err t P>|t| [0.025 0.975]
Intercept 14.5033 0.226 64.283 0.000 14.061 14.946
interest 0.3393 0.029 11.697 0.000 0.282 0.396

To adjust for ml_1 and ml_2, you could just include them in your model, but let’s see
how to manage the same thing with reweighting. The first challenge that needs to be
addressed is the fact that continuous variables have a probability of zero everywhere,
i.e., P T = t = 0. This occurs because the probability is represented by the area under
the density, and the area of a single point is always zero. One possible solution is to

170 | Chapter 5: Propensity Score



work with the conditional density function f T X  instead of the conditional proba‐
bility P T = t X . However, this approach presents another issue, which is specifying
the distribution of the treatment.

Here, for simplicity’s sake, let’s assume it is drawn from a normal distribution
T ∼ N μi, σ2 . This is a fairly reasonable simplification, especially since the normal
distribution can be used to approximate other distributions. Moreover, let’s assume
constant variance σ2, instead of one that changes for each individual.

Recall that the density of the normal distribution is given by the following function:

f ti =
exp − 1

2
ti − μi

σ

2

σ 2π

Now you need to estimate the parameters of this conditional Gaussian, that is, the
mean and standard deviation. The simplest way to do that is using OLS to fit the
treatment variable:

In [34]: model_t = smf.ols("interest~ml_1+ml_2", data=df_cont_t).fit()
         

Then, the fitted values will be used as μi and the standard deviation of the residual
will be σ. With this, you have an estimate for the conditional density. Next, you’ll
need to evaluate that conditional density at the given treatment, which is why I’m
passing T to the x argument in the density function in the following code:

In [35]: def conditional_density(x, mean, std):
             denom = std*np.sqrt(2*np.pi)
             num = np.exp(-((1/2)*((x-mean)/std)**2))
             return (num/denom).ravel()
             

         gps = conditional_density(df_cont_t["interest"],
                                   model_t.fittedvalues,
                                   np.std(model_t.resid))
         gps
         

Out[35]: array([0.1989118, 0.14524168, 0.03338421, ..., 0.07339096, 0.19365006,
                0.15732008])
         

Alternatively, you can (and probably should) import the normal distribution from
scipy and use that instead:

In [36]: from scipy.stats import norm

         gps = norm(loc=model_t.fittedvalues,

Generalized Propensity Score for Continuous Treatment | 171



                    scale=np.std(model_t.resid)).pdf(df_cont_t["interest"])
         gps
         

Out[36]: array([0.1989118, 0.14524168, 0.03338421, ..., 0.07339096, 0.19365006,
                0.15732008])
         

Beyond the Normal

If the treatment follows another distribution other than the nor‐
mal, you can use generalized linear models (glm) to fit it. For exam‐
ple, if T was assigned according to a Poisson distribution, you
could build the GPS weights with something like the following
code:

import statsmodels.api as sm
from scipy.stats import poisson
 
mt = smf.glm("t~x1+x2",
             data=df, family=sm.families.Poisson()).fit()
 
gps = poisson(mu=m_pois.fittedvalues).pmf(df["t"])
 
w = 1/gps

Using the inverse of the GPS as weights in a regression model can adjust for the bias.
You can see that now you’ll find a negative effect of interest on duration, which makes
more business sense:

In [37]: final_model = smf.wls("duration~interest",
                               data=df_cont_t, weights=1/gps).fit()

         final_model.params["interest"]
         

Out[37]: -0.6673977919925854
         

There is still one more improvement that can be made, which will provide a more
intuitive understanding of GPS. Using this score to construct weights will assign
greater importance to points with unlikely treatments. Specifically, you will assign
high weights to units with high residuals in the treatment model that you have fitted.
Additionally, due to the exponential nature of the normal density, the weights will
increase exponentially with the size of the residual.

To illustrate this point, suppose you fit the interest rate using only ml_1, instead of
both ml_1 and ml_2. This simplification enables presenting everything in a single
plot. The resulting weights are displayed in the next figure. The first plot shows the
original data, color-coded by the confounder ml_1. Customers with low scores on

172 | Chapter 5: Propensity Score



ml_1 typically select longer durations to repay their loan. Furthermore, customers
with low ml_1 scores are assigned higher interest rates. Consequently, an upward bias
exists in the relationship between interest rate and duration.

The second plot shows the fitted values of the treatment model and the weights con‐
structed by the GPS, obtained from that model. They are larger the farther you go
from the fitted line. This makes sense, as the GPS gives more weight to unlikely treat‐
ments. But look how big the weights can get. Some are bigger than 1,000!

The last plot shows the same weights, but in the relationship between interest and
duration. Since both low interest rates at low values of ml_1 and high interest at high
values of ml_1 are unlikely, inverse GPS weight gives high importance to those points.
This manages to reverse the positive (and biased) relationship between interest and
duration. But this estimator will have huge variance, as it is practically just using a
few data points—those with very high weights. Moreover, because this data was simu‐
lated, I know for a fact that the true ATE is –0.8, but the preceding estimate is only
–0.66.

To improve upon it, you can stabilize the weights by the marginal density f t . Unlike
with discrete treatment, where weight stabilization was just nice to have, with the
GPS, I would say it is a must. To estimate f t , you can simply use the average treat‐
ment value. Then, evaluate the resulting density at the given treatments.

Notice how this produces weights that sum to (almost) the original sample size.
Thinking about this in the light of importance sampling, these weights take you from
f t x  to f t , a density where the treatment does not depend on x:

In [38]: stabilizer = norm(
             loc=df_cont_t["interest"].mean(),
             scale=np.std(df_cont_t["interest"] - df_cont_t["interest"].mean())
         ).pdf(df_cont_t["interest"])

         gipw =  stabilizer/gps

         print("Original Sample Size:", len(df_cont_t))

Generalized Propensity Score for Continuous Treatment | 173



         print("Effective Stable Weights Sample Size:", sum(gipw))
         

Out[38]: Original Sample Size: 10000
         Effective Stable Weights Sample Size: 9988.19595174861
         

Again, to understand what is going on, suppose you fit f t x  using only ml_1. Once
again, inverse propensity weighting gives high importance to points that are far from
the fitted values of the treatment model, as they fall in a low-density region of f t x .
But additionally, the stabilization also gives low importance to points that are far
away from f t , that is, points far from the mean. The result is twofold. First, the sta‐
bilized weights are much smaller, which gives you lower variance. Second, it becomes
clearer that you are now giving more importance to points with both low values of
ml_1 and low interest rate (and vice versa). You can see this by the change in the color
pattern between the first and third plots:

Also, these stabilized weights give you an estimate that is much closer to the true ATE
of –0.8:

In [39]: final_model = smf.wls("duration ~ interest",
                               data=df_cont_t, weights=gipw).fit()

         final_model.params["interest"]
         

Out[39]: -0.7787046278134069
         

As you can see, even though weight stabilization didn’t have an impact in the case
where T was discrete, it is very relevant for continuous treatments. It gets you closer
to the true value of the parameter you are trying to estimate and it also significantly
reduces the variance. Since it is a bit repetitive, I’m omitting the code to compute the
95% CI of the estimates, but it is pretty much what you did before: just wrap the

174 | Chapter 5: Propensity Score



whole thing in a function and bootstrap it. But just so you can see it for yourself, here
are the 95% CI with and without stabilization:

95% CI, non-stable:  [-0.81074164 -0.52605933]
95% CI, stable:  [-0.85834311 -0.71001914]

Notice how both contain the true value of –0.8, but the one with stabilization is much
narrower.

Continuous Treatment Literature
There are other ways to estimate the treatment effect with models that predict the
treatment. One idea (by Hirano and Imbens) is to include the GPS as a covariate in a
regression function. Another option (by Imai and van Dyk) is fit T, segment the data
based on the predictions T, regress the treatment on the outcome on each segment
defined by T, and combine the results using a weighted average, where the weights
are the size of each group.

For a more comprehensive survey of the available options, I recommend checking out
Douglas Galagate’s PhD thesis, “Causal Inference with a Continuous Treatment and
Outcome.”

There is also a Python package named causal-curve that provides a scikit-learn–like
API for modeling continuous treatment with GPS, if you don’t want to code all of this
by hand.

Key Ideas
Along with regression—and orthogonalization in general—inverse propensity
weighting is the second workhorse for bias adjustment in your causal inference tool‐
box. Both techniques require you to model the treatment. This should serve as a
reminder of how important it is to think about the treatment assignment mechanism
in any causal inference problem. However, each technique makes use of that treat‐
ment model in a very unique way. Orthogonalization residualized the treatment, pro‐
jecting it to a new space where it becomes linearly independent (orthogonal) to the
covariates X that were used to model the treatment. IPW keeps the same treatment
dimension, but reweights the data by the inverse of the treatment propensity:

w = P T
P T X

This makes it look like the treatment was drawn from a distribution P T , which does
not depend on the covariates X that were used to create the propensity model.

Key Ideas | 175

https://oreil.ly/8CteT


Figure 5-1 shows a simple comparison between the two approaches. In this data,
treatment effect is positive, but confounded by x, which is depicted in the color
schema of the data points. The first plot contains the original data along a regression
line of y on y. The negative slope is due to the bias that comes from x. The next two
plots show how orthogonalization and IPW debias this data using very distinct ideas.
Both manage to recover a positive causal effect of t on y, as shown by their respective
regression lines.

Figure 5-1. How orthogonalization and IPW remove bias

If both procedures manage to debias the data, a natural question that arises is which
one should you choose. This is a bit personal, but here is my take on it. I really like
IPW for when the treatment is discrete, especially if you pair it with outcome model‐
ing in a doubly robust approach. However, when the treatment is continuous, I tend
to gravitate toward regression modeling of the kind you saw in Chapter 4. With con‐
tinuous treatment, you’ll have very few data points around any specific treatment. As
a result, a method like IPW, which doesn’t pose a parametric assumption on the treat‐
ment response function, becomes less appealing. For me, it is more productive to
assume some smoothness in the treatment response function, allowing you to pool
information from neighboring points around a particular treatment to infer its
response.

Sure, I think it is very much worth understanding approaches like the Generalized
Propensity Score, as it gives you further intuition into IPW in general. That is why
I’ve included it in this chapter. Also, as the continuous treatment literature advances, I
want you to be able to keep up with it, if you wish to. But, day-to-day, when T is con‐
tinuous, I think you’ll be better off with outcome models like linear regression.

176 | Chapter 5: Propensity Score



PART III

Effect Heterogeneity and
Personalization





CHAPTER 6

Effect Heterogeneity

This chapter introduces what is perhaps the most interesting development of causal
inference applied to the industry: effect heterogeneity. Up until this point, you under‐
stood the general impact of a treatment. Now, you’ll focus on finding how it can affect
people differently. The idea that the treatment effect is not constant is simple, yet
incredibly powerful. Knowing which units respond better to a certain treatment is
key in deciding who gets it. Effect heterogeneity offers a causal inference approach to
the cherished idea of personalization.

You’ll start by understanding effect heterogeneity on a theoretical level, what the chal‐
lenges are in estimating effect heterogeneity, and how you can expand what you
already learned to work around those challenges. Next, you’ll see that estimating het‐
erogeneous effects is closely related to predictive problems, which are already very
familiar to data scientists. Consequently, you’ll see how the idea of cross-validation
and model selection still applies in treatment heterogeneity models. However, validat‐
ing your effect estimate is much more challenging than evaluating a simple predictive
model, which is why you’ll see some novel ideas on how to do it.

The chapter closes with some guidelines and examples on how to use effect heteroge‐
neity to guide decision making. Although not exhaustive, I hope those examples will
inform you on how to use these ideas on your own business problems.

From ATE to CATE
So far, every time you’ve estimated the causal impact of a treatment, it was mostly the
average treatment effect:

τ = E Y1 − Y0

179



or the continuous treatment equivalent:

τ = E y′ t

where y′ t  is the derivative of the treatment response function. That is, you’ve
learned techniques to uncover the general effectiveness of a treatment. ATE estima‐
tion is the bedrock of causal inference. It’s a super useful tool for the decision-making
problem that is referred to as program evaluation: when you want to know if you
should roll out a treatment to the entire population or not.

Now, it’s time to learn how to inform another type of decision: which unit should you
treat? For that, you’ll need to allow the decision to change from one unit to another.
For example, it might be beneficial to give a discount coupon to one customer but not
to another, since one customer might be more sensitive to discounts. Or, it might
make sense to prioritize a vaccine to one group over another, as those would benefit
more from such treatment. In this type of situation, personalization is key.

One way to achieve this personalization is by taking effect heterogeneity into account,
which involves estimating the conditional average treatment effect (CATE). By con‐
sidering the unique characteristics of each unit, you can determine the most effective
treatment for that particular case:

E Y1 − Y0 X or E y′ t X

The conditioning on X means that you now allow the treatment effect to be different
depending on the characteristics, as defined by the covariates X of each unit. Again,
here, you believe that not all entities respond equally well to the treatment and you
want to leverage that heterogeneity. You want to treat only the right units (in the
binary case) or figure out the optimal treatment dosage for each unit (in the continu‐
ous case).

For instance, if you are a bank that has to decide the loan each customer is eligible for,
you can be sure that it’s not a good idea to give loads of money to everyone, although
it might be reasonable for some. You will have to be smart with your treatment (loan
amount). Perhaps, depending on the customer credit score, you can figure out what
the proper loan amount is. Of course, you don’t need to be a big institution to lever‐
age personalization. There’s no shortage of examples where it applies. What days of
the year should you do sales? How much should you charge for a product? How
much exercise is too much exercise for each person?

180 | Chapter 6: Effect Heterogeneity



Why Prediction Is Not the Answer
Think of it this way. You have a bunch of customers and a treatment (price, discount,
loan…) and you want to personalize the treatment—for example, give different dis‐
counts to different customers. And say you can organize your customers in the fol‐
lowing treatment by outcome plot:

You can think about the personalization task as problem of customer segmentation.
You want to create groups of customers based on how they respond to your treat‐
ment. For example, say you want to find customers who respond well to discounts
and customers who respond poorly to them. Well, the customer’s response to a treat‐
ment is given by the conditional treatment effect δY

δT . So, if you could somehow esti‐
mate that for each customer, you would be able to group those who respond great to
the treatment (high treatment effect) and those who don’t respond very well to it. If
you did that, you would split the customer space somewhat like the following image:

That would be wonderful because now you would be able to estimate different treat‐
ment effects on each group. Again, since the effect is just the slope of the treatment

Why Prediction Is Not the Answer | 181



response function, if you can produce groups where that slope differs, entities on
those partitions will have different responsiveness to the treatment:

Now, contrast this with what you would get with a traditional machine learning
approach. You would probably try to predict Y, rather than the derivative δY

δT  for each
unit. This would essentially partition the space on the y-axis, assuming that your pre‐
dictive model can approximate the target well. However, this wouldn’t necessarily
lead to groups with different treatment effects. Which is why simply predicting the
outcome is not always useful for decision making:

OK, you might say, I get that I have to estimate the effect, instead of just predict the
outcome, but it’s kind of tricky. How can I predict the slope δSales

δDiscount  if I can’t see it?

That’s a good point. Unlike the raw outcome Y, slopes (or rate of changes) are essen‐
tially nonobservable on a unit level. For you to see the individual slopes, you would
have to observe each unit under different treatment levels and calculate how the out‐
come changes for each of those treatments:

δYi
δTi

≈
Y Ti − Y Ti + �

Ti − Ti + �

182 | Chapter 6: Effect Heterogeneity



This is the fundamental problem of causal inference all over again. You can’t ever see
the same unit under different treatment conditions. So, what can you do?

CATE and ITE

Keep in mind that the CATE is different from the individual treat‐
ment effect (ITE). For instance, suppose you have two groups,
x = 1 and x = 2, each with 4 units, and you want to know the effect
of a new drug on an illness that usually kills 50% of those with it.
For group x = 1, the medicine is detrimental to one patient, killing
it, but it saves another. For the group x = 2, the effect of the drug is
null, and 1 of them dies (remember that the illness kills 50%). In
both groups, the CATE is 0.5, but the ITE of no single unit is 0.5.

CATE with Regression
I think you probably saw it coming: as with most things in applied causal inference,
the answer tends to start with linear regression. But before going that route, let’s make
things a bit more tangible. Pretend that you work for a chain of restaurants that oper‐
ate across the country. A key component of this business is understanding when it
should give discounts to its customers. For this reason, the company ran a nationwide
experiment that lasted three years, where it randomized discounts in six different res‐
taurants in the chain. The data is stored in the following data frame:

In [1]: data = pd.read_csv("./data/daily_restaurant_sales.csv")

        data.head()
        

rest_id day month weekday ... is_nov competitors_price discounts sales
0 0 2016-01-01 1 4 ... False 2.88 0 79.0
1 0 2016-01-02 1 5 ... False 2.64 0 57.0
2 0 2016-01-03 1 6 ... False 2.08 5 294.0
3 0 2016-01-04 1 0 ... False 3.37 15 676.5
4 0 2016-01-05 1 1 ... False 3.79 0 66.0

Your goal here is to understand when it is the best time to give discounts. In this data,
you have one row per restaurant and day combination. This is a bit different from
most of the examples used in this book, where the unit was customers. Now, the unit
is a day–restaurant combination. Even so, you can still apply the same reasoning from
before, only instead of treating customers, you’ll “treat” (give a discount) days instead
of customers. You could also have a different price at each restaurant at each day, but
let’s simplify the problem to keeping prices consistent across restaurants.

CATE with Regression | 183



You can frame this business problem as a CATE estimation problem. If you can create
a model that outputs the sales sensitivity to discount for each day and covariate,
that is:

∂
∂t E Sales t X ,

then, you can use that model to decide when to give a discount and how much dis‐
count to give.

CATE Identification

Throughout this chapter, you won’t have to worry too much about
identification, since the treatment is randomized in the evaluation
set. However, the whole idea of estimating the CATE is based on
making E Sales t X = E Sales T = t, X .

Now that you have something more tangible to work with, let’s see how regression
can help you. Recall that you were left in a complicated situation. You need to predict
δYi
δTi

, which is sadly not observable. So it’s not like you could simply use an ML algo‐

rithm and plug that as its target. But maybe you don’t need to observe 
δYi
δTi

 in order to

predict it.

For instance, let’s say you fit the following linear model to your data:

yi = β0 + β1ti + β2Xi + ei

If you differentiate it on the treatment, you will end up with the following:

δyi
δti

= β1

which is the ATE, in the case of a randomized treatment.

Since you can estimate the preceding model to get β1, you might even go ahead to say
that you can predict slopes even though you can’t observe them. In the example, it is a
rather simple prediction. You are predicting the constant value β1 for everyone. That’s
something, but not quite what you want. That’s the ATE, not the CATE. This doesn’t
help you in your task of figuring out when to give discounts, simply because every
unit (day and restaurant combination) gets the same slope prediction.

184 | Chapter 6: Effect Heterogeneity



To improve upon it, you can do the following simple change:

yi = β0 + β1ti + β2Xi + β3tiXi + ei

which would, in turn, give you the following slope prediction:

δyi
δti

= β1 + β3Xi

where β3 is a vector coefficient for the features in X. Now you are getting somewhere!
Each entity defined by a different Xi will have a different slope prediction. In other
words, the slope prediction will change as X changes. Intuitively speaking, including
the interaction between the treatment and the covariates allows the model to learn
how the effect changes by those same covariates. This is how regression can give you
a way of estimating the CATE, even though you can’t predict it directly.

Enough of theory for now. Let’s see how to code this up. First, you need to define the
covariates. In this example, the covariates are basically date-specific features, like the
month, the day of the week, and if it is a holiday. I’m also including the average com‐
petitor’s price, as this will probably affect how customers respond to discounts in each
restaurant.

Once you have the covariates, you need to interact them with the treatment. The *
operator does exactly that. It creates an additive term for the left and right side plus
an interaction term. For example, a*b will include the terms a, b and a * b in your
regression. In your example, this would result in the following:

salesi = β0 + β1discounti + β2Xi * discounti + β3Xi + ei

In [2]: import statsmodels.formula.api as smf

        X = ["C(month)", "C(weekday)", "is_holiday", "competitors_price"]
        regr_cate = smf.ols(f"sales ~ discounts*({'+'.join(X)})",
                            data=data).fit()
        

* and : Operators

If you only want the multiplicative term, you can use the : operator
inside the formula.

CATE with Regression | 185



Once you’ve estimated the model, the predicted slope can be extracted from the
parameter estimates:

δsalesi
δdiscountsi

= β1 + β3Xi

where β1 is the discount coefficient and β3 is the vector for the interaction coeffi‐
cients. You could just extract those parameters from the fitted model, but an easier
way to get the slope predictions is to use the definition of the derivative:

δy
δt = y t + � − y t

t + � − t

with � going to zero. You can approximate this definition by replacing � with 1:

δy
δt ≈ y t + 1 − y t

where y is given by your model’s predictions. Since this is a linear model, the approxi‐
mation is exact.

In other words, you’ll make two predictions with your models: one passing the origi‐
nal data and another passing the original data but with the treatment incremented by
one unit. The difference between those predictions is your CATE prediction. Here is
what this looks like with some code:

In [3]: ols_cate_pred = (
            regr_cate.predict(data.assign(discounts=data["discounts"]+1)) 
            -regr_cate.predict(data)
        )
        

OK, you have your CATE model and its predictions. But there is still a lurking ques‐
tion: how good is it? In other words, how can you evaluate this model? As you can
probably tell, comparing actuals and predicted values won’t do here, since the actual
treatment effect is not observed at a unit level.

PRACTICAL EXAMPLE

Price Discrimination
In the microeconomic literature, the example used in this chapter is what’s called price
discrimination. Despite the bad-sounding name, it simply means that firms can dis‐
criminate consumers into those who are willing to pay more and charge them more.

186 | Chapter 6: Effect Heterogeneity



A very well known example of price discrimination is when an airline company
changes the airfare depending on how far in advance the ticket is bought: customers
who need to book a flight for next week can expect to pay much more than those
booking one for next year. This is called intertemporal price discrimination, since the
company manages to distinguish the price sensitivity of customers based on time. It is
a very similar situation to the restaurant example you saw in this chapter.

A more infamous example would be when a wine company sells the same exact wine
in two different bottles, one marketed as premium at a much steeper price and one
market as average, sold at a more modest value. Yet a third way of price discriminat‐
ing is when you have half-price entry tickets for students. In this case, the company
knows that students make less money on average, meaning they have less to spend.

Evaluating CATE Predictions
If you come from a traditional data science background, you can probably see that
this sort of CATE prediction looks a lot like regular machine learning prediction, but
with a sneaky target that is not observed at a unit level. This means that a lot of the
model evaluation techniques used in traditional machine learning—like cross-
validation—still apply here, while others will need some adaptation.

So, to keep with tradition, let’s split the data into a train and a test set. Since you have
a time dimension, let’s use that. The train will contain data from 2016 and 2017 and
the test, from 2018 onward:

In [4]: train = data.query("day<'2018-01-01'")
        test = data.query("day>='2018-01-01'")
        

Now, let’s refit the regression model for CATE from before, but using only the train‐
ing data for estimation and making predictions on the test set:

In [5]: X = ["C(month)", "C(weekday)", "is_holiday", "competitors_price"]
        regr_model = smf.ols(f"sales ~ discounts*({'+'.join(X)})",
                             data=train).fit()

        cate_pred = (
            regr_model.predict(test.assign(discounts=test["discounts"]+1)) 
            -regr_model.predict(test)
        )
        

Evaluating CATE Predictions | 187



To make things interesting, let’s benchmark this regression model with a purely pre‐
dictive machine learning model. This ML model simply tries to predict the out‐
come Y:

In [6]: from sklearn.ensemble import GradientBoostingRegressor

        X = ["month", "weekday", "is_holiday", "competitors_price", "discounts"]
        y = "sales"

        np.random.seed(1)
        ml_model = GradientBoostingRegressor(n_estimators=50).fit(train[X],
                                                                  train[y])

        ml_pred = ml_model.predict(test[X])
        

Finally, let’s also include a very bad model in our comparisons. This model simply
outputs random numbers between –1 and 1. It is obviously nonsense, but an interest‐
ing benchmark to keep an eye on. Ultimately, you want to know if allocating the
treatment by a CATE model will be better than simply at random, which is what this
last model does.

For convenience, I’m storing everything in a new data frame, test_pred:

In [7]: np.random.seed(123)

        test_pred = test.assign(
            ml_pred=ml_pred,
            cate_pred=cate_pred,
            rand_m_pred=np.random.uniform(-1, 1, len(test)),
        )
        

rest_id day sales ml_pred cate_pred rand_m_pred
731 0 2018-01-01 251.5 236.312960 41.355802 0.392938
732 0 2018-01-02 541.0 470.218050 44.743887 –0.427721
733 0 2018-01-03 431.0 429.180652 39.783798 –0.546297
734 0 2018-01-04 760.0 769.159322 40.770278 0.102630
735 0 2018-01-05 78.0 83.426070 40.666949 0.438938

Once you have your models, it’s time to figure out how to evaluate and compare
them. Namely, you’ll have to deal with the fact that the ground truth is non-
observable. As you’ll soon see, the trick is to realize that even though you can’t mea‐
sure the treatment effect for a single individual, you can estimate it for very small
groups. Hence, if you wish to come up with a way to evaluate your model in terms of
CATE, you’ll have to rely on group-level metrics.

188 | Chapter 6: Effect Heterogeneity



Effect by Model Quantile
The idea of making CATE models came from the necessity of finding which units are
more sensitive to the treatment with the goal of allocating the treatment more effi‐
ciently. It came from a desire for personalization. If that is the goal, it would be very
useful if you could somehow order units from more sensitive to less sensitive. And
since you have the predicted CATE, you can order units by that prediction and hope
it also orders them by the real CATE. Sadly, you can’t evaluate that ordering on a unit
level. But, what if you don’t need to? What if, instead, you evaluate groups defined by
the ordering?

First, recall that if the treatment is randomly assigned, you don’t have to worry about
confounding bias here. Estimating the effect for a group of units is easy. All you need
is to compare the outcome between the treated and untreated. Or, more generally, run
a simple regression of Y on T inside that group:

yi = β0 + β1ti + ei X = x

From the theory on simple linear regression, you know that:

β1 =
∑ ti − t yi

∑ ti − t 2

where t  is the group sample average for the treatment and y is the group sample aver‐
age for the outcome.

Curry
The curry decorator is a way to create functions that can be partially applied:

@curry
def addN(x, N):
    return x+N
 
ad5 = addN(N=5)
ad13 = addN(N=13)
 
print(ad5(5))
>>> 10
 
print(ad13(5))
>>> 18

Effect by Model Quantile | 189



To code the slope parameter estimate of a single variable regression, you can use
curry. It’s very useful when you need to create functions that accept a data frame as
its only argument:

In [8]: from toolz import curry

        @curry
        def effect(data, y, t):
                return (np.sum((data[t] - data[t].mean())*data[y]) /
                        np.sum((data[t] - data[t].mean())**2))
        

Applying this function to the entire test set yields the ATE:

In [9]: effect(test, "sales", "discounts")
        

Out[9]: 32.16196368039615
        

But that is not what you want. Instead, you want to know if the models you’ve just
fitted can create partitions in the data that separate units into those that are more sen‐
sitive to the treatment from those that are less sensitive. For that, you can segment the
data by quantiles of your model’s prediction and estimate the effect for each quantile.
If the estimated effect in each quantile is ordered, you know that the model is also
good at ordering the true CATE.

Response Curve Shape
Here the effect is defined as estimated slope of regressing Y on T. If you think this is
not a good effect metric, you could use others. For instance, if you think the response
function is concave, you could define the effect as the slope of regressing Y on log T
or T. If you have a binary outcome, it might make sense to use the parameter esti‐
mate of a logistic regression, instead of the one from a linear regression. The key
thing here is to see that, if T is continuous, you have to summarize the entire treat‐
ment response function into a single effect number.

Let’s code a function to calculate the effect by quantile. It first uses pd.qcut to seg‐
ment the data by q quantiles (10, by default). I’m wrapping it in pd.IntervalIndex to
extract the midpoint of each group returned by pd.qcut. The rounding is just so the
results look prettier.

Then, I’m creating a column in the data with these groups, partitioning the data by
them and estimating the effect in each partition. For this last step, I’m using
the .apply(...) method from pandas. This method takes a function that has a data
frame as an input and outputs a number: f(DataFrame) -> float. Here is where the
effect function you created earlier comes into play. You can call it passing just the

190 | Chapter 6: Effect Heterogeneity



outcome and treatment arguments. This will return a partially applied effect func‐
tion that has the data frame as the only missing argument. It is the type of func‐
tion .apply(...) expects.

The result of using this function in the test_pred data frame is a column where the
indexes are the quantiles of your model’s prediction and the values, the treatment
effect in that quantile:

In [10]: def effect_by_quantile(df, pred, y, t, q=10):
             
             # makes quantile partitions
             groups = np.round(pd.IntervalIndex(pd.qcut(df[pred], q=q)).mid, 2) 
             
             return (df
                     .assign(**{f"{pred}_quantile": groups})
                     .groupby(f"{pred}_quantile")
                     # estimate the effect on each quantile
                     .apply(effect(y=y, t=t))) 

         
         effect_by_quantile(test_pred, "cate_pred", y="sales", t="discounts")
         

Out[10]: cate_pred_quantile
         17.50    20.494153
         23.93    24.782101
         26.85    27.494156
         28.95    28.833993
         30.81    29.604257
         32.68    32.216500
         34.65    35.889459
         36.75    36.846889
         39.40    39.125449
         47.36    44.272549
         dtype: float64
         

Notice how the estimated effect in the first quantile is lower than the estimated effect
in the second quantile, which is lower than the estimated effect in the third quantile,
and so on. This is evidence that your CATE prediction is indeed ordering the effect:
days with lower predictive value also have low sensitivity to discount and vice versa.
Also, the midpoint prediction in each quantile (the index in the preceding column) is
very close to the estimated effect for the same quantile. This means that your CATE
model not only orders the true CATE quite well, but it also manages to predict it cor‐
rectly. In other words, you have a calibrated model for the CATE.

Effect by Model Quantile | 191



Next, so you have other models to compare against, you can apply the same function,
but passing the predictive ML model and the random model. The following plot
shows the effect by quantile for the three models defined earlier:

First, look at the random model (rand_m_pred). It has roughly the same estimated
effect in each of its partitions. You can already see just by looking at the plot that it
won’t help you with personalization since it can’t distinguish between days with high
and low discount sensitivity. The effect in all of its partitions is just the ATE. Next,
consider the ML predictive model, ml_pred. That model is a bit more interesting. It
looks like groups with high sales predictions and low sales predictions are both more
sensitive to discounts. It doesn’t exactly produce an ordering score, though, but you
could use it for personalization, maybe giving more discounts when sales predictions
are either very high or very low, as those indicate high treatment sensitivity.

Finally, look at the CATE model you got from regression, cate_pred. The group with
low CATE prediction has indeed lower CATE than the groups with high CATE pre‐
dictions. It looks like this model can distinguish high from low effects pretty well. You
can tell by the staircase shape of its effect by a quantile plot. In general, the steeper the
staircase shape, the better the model in terms of ordering CATE.

In this example, it is pretty clear which model is better in terms of ordering sensitivity
to discount. But if you have two decent models, the comparison might not be that
clear cut. Also, visual validations are nice, but not ideal if you want to do model selec‐
tion (like hyperparameter tuning or feature selection). Ideally, you should be able to
summarize the quality of your model in a single number. We’ll get there, but to do so,
you first need to learn about the cumulative effect curve.

Cumulative Effect
If you understood the effect by quantile plot, this next one will be pretty easy. Once
again, the idea is to use your model to define groups and estimate effects inside those

192 | Chapter 6: Effect Heterogeneity



groups. However, instead of estimating the effect by group, you will accumulate one
group on top of the other.

First, you need to sort your data by a score—usually a CATE model, but it can be any‐
thing really. Then, you’ll estimate the effect on the top 1%, according to that ordering.
Next, you’ll add the following 1% and calculate the effect on the top 2%, and then on
the top 3% and so on and so forth. The result will be a curve of effect by cumulative
sample. Here is a simple code to do that:

In [11]: def cumulative_effect_curve(dataset, prediction, y, t,
                                     ascending=False, steps=100):
             size = len(dataset)
             ordered_df = (dataset
                           .sort_values(prediction, ascending=ascending)
                           .reset_index(drop=True))
             
             steps = np.linspace(size/steps, size, steps).round(0)
             
             return np.array([effect(ordered_df.query(f"index<={row}"), t=t, y=y)
                              for row in steps])

         cumulative_effect_curve(test_pred, "cate_pred", "sales", "discounts")
         

Out[11]: array([49.65116279, 49.37712454, 46.20360341, ..., 
         32.46981935, 32.33428884, 32.16196368])

If the score you used to sort the data is also good for ordering the true CATE, the
resulting curve will start very high and gradually decrease to the ATE. In contrast, a
bad model will either quickly converge to the ATE or simply fluctuate around it all
the time. To better understand this, here is the cumulative effect curve for the three
models you’ve created:

First, notice how the regression CATE model starts very high and gradually con‐
verges to the ATE. For instance, if you sort your data by this model, the ATE in the

Cumulative Effect | 193



top 20% will be around 42, the ATE of the top 50% would be something like 37, and
the ATE of the top 100% will simply be the global effect of the treatment (ATE). In
contrast, a model that simply outputs random numbers will just gravitate around the
ATE and a model that reverse orders the effect will start below the ATE.

Order Asymmetry

It’s important to mention that this ordering is not symmetric. That
is, taking a score and reversing it won’t simply flip the curve
around the ATE line.

The cumulative effect curve is somewhat nicer than the effect by the quantile curve
because it allows a summarization into a single number. For instance, you could com‐
pute the area between the curve and the ATE and use that to compare different mod‐
els. The bigger the area, the better the model. But there is still a downside. If you do
this, the beginning of the curve will have the biggest area. But that is exactly where
the uncertainty is the largest, due to the smaller sample size. Fortunately, there is a
very easy fix: the cumulative gain curve.

Cumulative Gain
If you take the exact same logic from the cumulative effect curve, but multiply each
point by the cumulative sample, Ncum/N, you get the cumulative gain curve. Now,
even though the beginning of the curve will have the highest effect (for a good model,
that is), it will get downscaled by the small relative size.

Taking a look at the code, what changes is that I’m now multiplying the effect by
(row/size) at each iteration. Additionally, I can choose to normalize this curve by
the ATE, which is why I’m also subtracting a normalizer from the effect at each
iteration:

In [12]: def cumulative_gain_curve(df, prediction, y, t,
                                   ascending=False, normalize=False, steps=100):
             
             effect_fn = effect(t=t, y=y)
             normalizer = effect_fn(df) if normalize else 0
             
             size = len(df)
             ordered_df = (df
                           .sort_values(prediction, ascending=ascending)
                           .reset_index(drop=True))
             
             steps = np.linspace(size/steps, size, steps).round(0)
             effects = [(effect_fn(ordered_df.query(f"index<={row}"))
                         -normalizer)*(row/size) 
                        for row in steps]

194 | Chapter 6: Effect Heterogeneity



             return np.array([0] + effects)

         
         cumulative_gain_curve(test_pred, "cate_pred", "sales", "discounts")
         

Out[12]: array([ 0.        ,  0.50387597,  0.982917  , ..., 31.82346463, 
         32.00615008, 32.16196368])

See Also

If you don’t want to bother implementing all these functions, I’ve
been working along with some colleagues on a Python library to
handle that for you. You can simply import all the curves and their
AUC from fklearn causal module:

from fklearn.causal.validation.auc import *
from fklearn.causal.validation.curves import *

Both the cumulative gain and normalized cumulative gain for the three models are
shown in the following image. Here, the better model in terms of ordering CATE is
the one that has the biggest area between the curve and the dashed line representing
the ATE:

To summarize the model performance into a single number, you can just sum the val‐
ues from the normalized cumulative gain curve. The model with the biggest value will
be the best one in terms of ordering CATE. Here is the area under the curve (AUC)
for the three models you’ve been evaluating so far. Notice that the area for the ML
model is negative because it reverse-orders CATE:

AUC for rand_m_pred: 6.0745233598544495
AUC for ml_pred: -45.44063124684
AUC for cate_pred: 181.74573239200615

Cumulative Gain | 195

https://oreil.ly/mgYoJ


Again, the fact that you can condense your model’s performance into a single number
is amazing, as it allows for automated model selection. Still, as much as I like this last
curve, there are some caveats you need to be aware of when using them.

First, in all the curves that you saw, it’s important to keep in mind that each point in
this curve is an estimate, not a ground truth value. It is the estimate of the regression
slope on a particular—and sometimes very small—group. And since it is a regression
estimate, it depends on the relationship between T and Y being correctly specified.
Even with randomization, if the relationship between the treatment and the outcome
is, let’s say, a log function, estimating the effect as if it were a line will yield wrong
results. If you know the shape of the treatment response function, you can adjust
your effect function to be the slope of y~log(t) instead of y~t. But you need to know
the correct shape in order to do that.

Second, these curves don’t really care if you get the CATE right. All they care about is
if the ordering is correct. For example, if you take any of your models and subtract
–1,000 from their predictions, their cumulative gain curve will remain unchanged.
Hence, even if you have a biased estimator for the CATE, this bias won’t show up in
these curves. Now, this might not be a problem, if all you care about is prioritizing the
treatment. In this case, ordering is enough. But if you do care about precisely estimat‐
ing the CATE, these curves might be misleading. If you come from a data science
background, you can draw a parallel between the cumulative gain curve and the ROC
curve. Similarly, a model with good ROC-AUC won’t necessarily be calibrated.

Third, and perhaps most importantly, all of the preceding methods require unconfoun‐
ded data. If you have any bias, the effects you’ll estimate—in the subgroups or the
ATE—will be wrong. If the treatment is not randomized, in theory, you can still use
these evaluation techniques, provided you debiased the data before, by using some‐
thing like orthogonalization of IPW. However, I’m a bit skeptical of this. Instead, I
strongly recommend you invest in some experimental data, even if it is just a little,
only for the purpose of evaluation. That way you can focus on effect heterogeneity
without having to worry about confounding creeping in.

See Also

All the curves presented here are an attempt to generalize the
curves traditionally used for uplift modeling, when the treatment is
binary. If you want to review that literature, I recommend the
papers “Causal Inference and Uplift Modeling a Review of the Lit‐
erature,” by Pierre Gutierrez and Jean-Yves Gérardy and “Empirical
Analysis of Model Selection for Heterogeneous Causal Effect Esti‐
mation,” by Divyat Mahajan et al.

Evaluation of causal models is an area of research that is still developing. As such, it
still has many blindspots. For instance, the curves presented so far only tell you how

196 | Chapter 6: Effect Heterogeneity



good a model is in terms of ordering the CATE. I haven’t found a good solution to
checking if your model correctly predicts CATE. One thing that I like to do is to use
the effect by quantile plot alongside the cumulative gain curve, since the first one
gives me some idea on how calibrated the model is while the second gives me an idea
how well it orders the CATE. As for the normalized cumulative gain, it is just a zoom-
in that makes visualization easier.

But I’ll admit that this is not ideal. If you are looking for a summary metric like the
R2 or the MSE—both commonly used in predictive models—I’m sad to say I haven’t
found any good parallel to those in the causal modeling world. Here is what I did
find, though—target transformation.

Target Transformation
It turns out that even though you can’t observe the true treatment effect τ xi , you can
create a target variable that approximates it in expectation:

Yi* =
Yi − μy Xi Ti − μt Xi

Ti − μt Xi
2 =

Yi − μy Xi
Ti − μt Xi

where μy is a model for the outcome and μt is a model for the treatment. This target is
interesting because E Y i* = τi. Notice how it looks a lot like the formula for the
regression coefficient, with the numerator being the covariance between Y and T and
the denominator, the variance of T. However, instead of using expectations to define
those, it is computed on a unit level.

Since this target approximates the true treatment effect, you can use it to compute
deviance metrics, like the mean squared error (MSE). If your model for CATE is good
in terms of predicting the individual level effect τi, then the MSE of its prediction
with respect to this target should be small.

There is a catch, though. This target will be incredibly noisy when close to the treat‐
ment average, where the denominator will tend toward zero. To fix that, you can
apply weights that assign low importance to points where Ti − μt Xi  is small. For
instance, you can weight the units by Ti − μt Xi

2.

Foreshadowing the R-Loss

There is a good theoretical reason for using those weights. You’ll
learn more about it when we talk about nonparametric Double/
Debiased Machine Learning in Chapter 7. For now, you’ll have to
take my word for it.

Target Transformation | 197



To code this target, you can simply divide the residuals of an outcome and a treat‐
ment model:

In [13]: X = ["C(month)", "C(weekday)", "is_holiday", "competitors_price"]

         y_res = smf.ols(f"sales ~ {'+'.join(X)}", data=test).fit().resid
         t_res = smf.ols(f"discounts ~ {'+'.join(X)}", data=test).fit().resid

         tau_hat = y_res/t_res
         

Next, you can use it to compute the MSE of all your models. Notice how I’m also
using weights like discussed previously:

In [14]: from sklearn.metrics import mean_squared_error

         for m in ["rand_m_pred", "ml_pred", "cate_pred"]:
             wmse = mean_squared_error(tau_hat, test_pred[m],
                                       sample_weight=t_res**2)
             print(f"MSE for {m}:", wmse)
         

Out[14]: MSE for rand_m_pred: 1115.803515760459
         MSE for ml_pred: 576256.7425385397
         MSE for cate_pred: 42.90447405550281
         

According to this weighted MSE, once again, the regression model used to estimate
the CATE performs better than the other two. Also, there is something interesting
here. The ML model performs worse than the random model. This is not surprising,
as the ML model is trying to predict Y not τi.

See Also

Like I said before, the literature on evaluating causal models is still
in its infancy. It’s quite an exciting problem, where new methods
are being proposed all the time. For example, in the paper “Intelli‐
gent Credit Limit Management in Consumer Loans Based on
Causal Inference,” the scientists from Ant Financial Services Group
propose partitioning the units into groups that have similar covari‐
ates (they use over 6,000 groups!), pretending that outcome is the
treatment effect plus some Gaussian random noise yi = τ xi + ei,
computing outcome MSE in each group N−1∑ yi − yi  and averag‐
ing the results using the sample size in each group.

Predicting Y will only be good in terms of ordering or predicting τi when the effect is
correlated with the outcome. This won’t generally be the case, but there are some sit‐
uations in which it might happen. Some of those are fairly common in business, so it
is worth taking a look at them.

198 | Chapter 6: Effect Heterogeneity



When Prediction Models Are Good for Effect Ordering
Like I said before, for a model that predicts Y to also be good at ordering the CATE, it
must be the case that Y and the CATE τ xi  are also correlated. For instance, in the
context of finding days where customers are more responsive to discounts in a restau‐
rant, if the days when sales are high coincide with the days when people are more
sensitive to discounts, then a model that predicts Y will also be good at ordering the
effect of T on Y. More generally, this can happen when the treatment response func‐
tion is nonlinear.

Marginal Decreasing Returns
When the treatment response function is concave, additional units of the treatment
will have less and less effect. This is a very common phenomenon in business, as
things tend to have a saturation point. For example, the number of sales can only go
so high, even if you set a discount to 100%, as there are factors that limit the amount
you can produce. Or, the effect of your marketing budget will eventually flatten out,
since there are only so many customers you can advertise to.

A marginally decreasing treatment response function looks something like this:

It is easy to see why, in this case, a model that is good at predicting the outcome Y can
also be good at ordering the CATE: the higher the outcome, the lower the effect.
Hence, if you take the model that predicts Y and sort your units by the inverse of
these predictions, you’ll probably manage to get a decent CATE ordering.

When Prediction Models Are Good for Effect Ordering | 199



Binary Outcomes
Another common situation where a model that predicts Y can be good for ordering
the CATE is when the outcome is binary. In this case, E Y T  has an S shape, flatten‐
ing out at 0 and 1:

In most business applications, the data will be concentrated at one or the other end of
this S-shaped function. For example, in banking, only a small fraction of customers
will default on their loans, which means you would be mostly to the left side of this
curve, where it looks exponential. As a result, if you have a model that predicts cus‐
tomer default, there is a good chance that customers with higher predictions will also
be more sensitive to the treatment. Intuitively speaking, those are customers close to
the tipping point between not defaulting and defaulting. For them, a small change in
the treatment can make all the difference.

In contrast, let’s say you work at an online shopping business where most of the cus‐
tomers that enter your site do buy something (convert). In this case, you are more to
the right of the S-shaped curve. Hence, if you have a model that predicts conversion,
there is a good chance that the same model can also order the effect of something like
discounts. The higher the chances of conversion, the lower the effect size. That’s
because at the right side, the S curve looks a bit like the marginally diminishing
returns case you saw before.

In general, when the outcome is binary, the closer you are to the middle—that is, to
E Y X = 50 %—the higher the effect will be.

PRACTICAL EXAMPLE

Prioritizing Vaccines
You saw how binary outcome induces a nonlinearity in the treatment response func‐
tion, which allows you to use the predictive value of the outcome to allocate the treat‐
ment. A very interesting application of this principle was seen in the COVID-19
pandemic. In 2021, the world managed to deliver its first batch of approved
COVID-19 vaccines to the general public. Back then, a crucial question was who

200 | Chapter 6: Effect Heterogeneity



should receive the vaccine first. This is, not surprisingly, a heterogeneous treatment
effect problem. Policymakers would like to vaccinate those who would benefit the
most first. In this situation, the treatment effect is avoiding death or hospitalization.
So, whose death or hospitalization decreased the most when given a shot? In most
countries, they were the elderly and those with prior health conditions (comorbidi‐
ties). Now, these are the people that are more likely to die when getting COVID-19.
Also COVID-19 mortality rate is thankfully much lower than 50%, which puts you to
the left of logistic function. In this region, by the same context we made for default
rates, it would make sense to treat those with a high baseline probability of death
when getting COVID-19, which are precisely the groups mentioned earlier. Is this a
coincidence? Maybe. Keep in mind that I’m not a health expert, so I might be very
wrong here. But the logic makes a lot of sense to me.

When the treatment response function is nonlinear, like in the binary outcome or in
the case where the outcome is marginally decreasing, a predictive model might yield a
good ordering of the CATE. Still, this doesn’t mean that it will be the best model nor
that it can’t be outperformed by a model that aims at directly predicting the CATE.
Moreover, even though such a model might order the treatment effect, it does not
predict that treatment effect. This is only OK if all you care about is sorting units by
their sensitivity to the treatment. But in case your decision making depends on cor‐
rectly estimating the CATE, additional effect by group estimation will be required.

See Also

Sometimes outcome prediction can outperform CATE prediction
because CATE tends to be very noisy. Fernández-Loría and Provost
discuss this further in their paper, “Causal Classification: Treatment
Effect Estimation vs. Outcome Prediction.”

Speaking of that, I think it is worth spelling out how you could use the CATE for
decision making. You probably already have a good idea how to do that, but maybe I
have some piece of advice you haven’t thought about.

CATE for Decision Making
When the treatment is binary, the decision-making process is pretty straightforward.
You essentially care about who responds positively to the treatment. If you have an
unlimited supply of treatments, then all you have to do is treat everyone whose CATE
is positive. If you don’t have a model that predicts the CATE, but you do have one
that orders it—as in the case of the predictive models discussed in the previous sec‐
tion—you can use the effect by model quantile plot. Just partition your data by quan‐
tiles of your model, estimate the treatment effect in each quantile, and treat everyone
up to the point where the effect is still positive.

CATE for Decision Making | 201



If you don’t have an unlimited supply of the treatment, then you need to add a second
rule. Not only will you treat only those with positive effect, but also those with the
highest CATE. For example, if you only have 1,000 units of the treatment, you proba‐
bly want to treat the top 1,000 units, according to some CATE ordering model, pro‐
vided that they all have positive effect.

If the treatment is continuous or ordered, things get a bit more complicated. You now
have to decide not only who to treat, but also how much to treat. This is very business
specific. Each problem will have its own treatment response function to optimize.
This means I can’t give you very detailed guidelines on how to do it, but I can walk
you through a typical example.

Consider once again the problem of deciding how much discount to give each day on
a chain of restaurants. Since deciding how much discount to give is just another way
of deciding what price to charge (Price = Pricebase * 1 − Discount ), let’s reframe that
problem as a price optimization one. In all business problems there is a cost (even if
not monetary) and a revenues function. Let’s say that the revenue of the restaurant is
given by the following equations:

Demandi = 50 − τ Xi Pricei

Revenuei = DemandiPricei

Revenue on a day i is just the price times the number of meals (demand) the restau‐
rant serves. However, the number of meals people are willing to buy on a particular
day is inversely proportional to the price charged on that day. That is, it has a compo‐
nent −τ Xi Pricei, where τ Xi  is how sensitive customers are to price increases on
that day (notice that this depends on the date-specific features, Xi). In other words,
that sensitivity is the conditional average treatment effect of price on demand.

If you plot the demand curve for different values of τ, you will see that τ is nothing
more than the slope of the demand curve. If you take the demand curve and multiply
it by the revenues curve, you would get a quadratic shape. In this curve, the day in
which customers are less sensitive to price (τ = 1) peak at a latter price value:

202 | Chapter 6: Effect Heterogeneity



Next, suppose that you spend 3 dollars in order to produce your meal. This means
that the cost is simply the quantity you produce, q, times 3:

Costs qi = 3qi

Keep in mind that the cost equation doesn’t depend on the treatment effect directly,
but if you recall that the quantity produced is just the quantity of customer orders—
that is, the demand—then, the higher the price, the lower the cost, as customers will
demand fewer meals.

Finally, once you have both revenues and costs, you can combine them to get the
amount of profit as a function price:

Profiti = Demandi * Pricei − Cost Demandi

If you plot the profits by price for different values of τi, you’ll see that each yields a
different optimal price. The lower τi, the less sensitive customers are to price increase,
which allows the restaurant to increase prices in order to make more profits:

CATE for Decision Making | 203



Economists will quickly realize that this is the famous problem of the firm. Setting the
marginal cost equal to the marginal revenue and isolating price gives a numerical sol‐
ution to the profit maximizing price:

P 50 − τ X P ′ = 3 50 − τ X P ′

P* = 3τ X + 50
2τ X

Notice that, in this case, the only unknown is the effect of price on demand, τ X . So,
if you can estimate it using a model that predicts CATE, you can convert that CATE
prediction to the optimal price.

Again, this is highly dependent on the form of the revenue and cost curve, which in
turn depends a lot on your business. But, in general, almost any treatment you care to
optimize has an upside—revenues, in this example—and a downside—costs, in this
example. To use CATE for deciding the level of a continuous treatment you have to
understand how it impacts both of those sides.

Corner Solution
In some rare situations, the treatment level that optimizes a business is none at all or
the maximum allowed level. For instance, let’s say that your local government sets a
price cap on the product you are selling. That cap is below the price that would maxi‐
mize your profits. In this case, the optimal price would simply be the maximum
allowed by the government. This situation is rare, however. In most cases, corner sol‐
utions arise when hidden prices are not taken into account. For example, if you are
trying to optimize cross-sell emails, you can argue that the cost of sending an email is
negligible, so you should just go ahead and send it to everyone. But I would argue
back saying that you are not taking into account the costs in terms of customer atten‐
tion: if you spam your customers, eventually they will get tired of you and unsub‐
scribe to your emails, which will cost you future sales that would come through the
email channel. These hidden costs are much harder to take into account, but it doesn’t
mean that they aren’t there. In fact, finding good proxies for those costs tend to be an
invaluable data science task.

204 | Chapter 6: Effect Heterogeneity



Key Ideas
This chapter introduces the idea of treatment heterogeneity. The key insight is that
each unit i can have a different treatment effect τi. If you knew this effect, you could
use it to better allocate the treatment among units. Sadly, due to the fundamental
problem of causal inference, this effect is unobservable. Still, if you assume that it
depends on observable features of the units, τ xi , then you can make some progress;
namely, you can go from estimating the average treatment effect to estimating the
conditional average treatment effect (CATE):

CATE = ∂
∂t E Y t X

So, even though the treatment effect is not observed at a unit level, you can still esti‐
mate group effects. A simple way of doing that is with linear regression, by including
an interaction term between the treatment and the covariates:

yi = β0 + τ0Ti + τXiTi + βXi + ei

Estimating this model would give you the following CATE estimate:

CATE = τ0 + τXi

Next, you saw some ideas on how to pair cross-validation with CATE evaluation
techniques in order to evaluate your CATE estimates. Since the CATE is not defined
for a single unit, you had to rely on group-specific metrics, like the effect by quantile
curve or the cumulative gain curve. If that is not enough, you could also define a tar‐
get that approximates the individual-level treatment effect and use that to calculate
deviance metrics, like the MSE.

Finally, it’s worth emphasizing that everything discussed in this chapter hinges on the
fact that the CATE, a causal quantity, can be identified from the conditional expecta‐
tion, a statistical quantity recoverable from data:

∂
∂t E Y t X = ∂

∂t E Y X, T = t .

Without that, the idea of CATE as a group effect you can estimate no longer holds,
which is why randomized data is so important for CATE estimation problems, even if
just for evaluating your treatment heterogeneity models.

Key Ideas | 205





CHAPTER 7

Metalearners

Just to recap, in Part III you’re focusing on treatment effect heterogeneity, that is,
identifying how units respond differently to the treatment. In this framework, you
want to estimate:

τi x = E Yi 1 − Yi 0 X = E τi X

or, E δY i t X  in the continuous case. In other words, you want to know how sensi‐
tive the units are to the treatment. This is super useful in the case where you can’t
treat everyone and need to do some prioritization of the treatment; for example,
when you want to give discounts but have a limited budget. Or when the treatment
effect is positive for some units but negative for others.

Previously, you saw how you could use regression with interaction terms to get con‐
ditional average treatment effect (CATE) estimates. Now, it’s time to throw some
machine learning algorithms into the mix.

Metalearners are an effortless way to leverage off-the-shelf predictive machine learn‐
ing algorithms for approximating treatment effects. They can be used to estimate the
ATE, but, in general, they are mostly used for CATE estimation, since they can deal
pretty well with high-dimensional data. Metalearners serve to recycle predictive mod‐
els for causal inference. All predictive models, such as linear regression, boosted deci‐
sion trees, neural networks, or Gaussian processes, can be repurposed for causal
inference using the approaches described in this chapter. Therefore, the success of the
metalearner is highly contingent on the machine learning technique it uses under the
hood. Oftentimes you’ll just have to try out many different things and see what works
best.

207



Metalearners for Discrete Treatments
Suppose you work for the marketing team at an online retailer. Your goal is to figure
out which customers are receptive to a marketing email. You know this email has the
potential of making customers spend more, but you also know that some customers
don’t really like to receive marketing emails. To solve this problem, you intend to esti‐
mate the conditional average treatment effect of the email on customers’ future pur‐
chase volume. That way, your team can use this estimate to decide who to send it to.

As with most business applications, you have a bunch of historical data where you’ve
sent marketing emails to customers. You can use that abundant data to fit your CATE
model. On top of that, you also have a few data points from an experiment where the
marketing email was randomized. You plan on using this precious data only for eval‐
uating your model, as you have so little of it:

In [1]: import pandas as pd
        import numpy as np

        data_biased = pd.read_csv("./data/email_obs_data.csv")
        data_rnd = pd.read_csv("./data/email_rnd_data.csv")

        print(len(data_biased), len(data_rnd))
        data_rnd.head()
        

Out[1]: 300000 10000
        

mkt_email next_mnth_pv age tenure ... jewel books music_books_movies health
0 0 244.26 61.0 1.0 ... 1 0 0 2
1 0 29.67 36.0 1.0 ... 1 0 2 2
2 0 11.73 64.0 0.0 ... 0 1 0 1
3 0 41.41 74.0 0.0 ... 0 4 1 0
4 0 447.89 59.0 0.0 ... 1 1 2 1

Both random and observational data have the exact same columns. The treatment
variable is mkt_email and the outcome you care about is the purchase volume 1
month after receiving the email—next_mnth_pv. In addition to these columns, the
data also contains a bunch of covariates such as customer’s age, time since first pur‐
chase on your website (tenure), and also a bunch of data on how much they bought in
each category. These covariates will dictate the treatment heterogeneity you plan on
fitting.

To streamline the development of your CATE models, you can create variables to
store the treatment, outcome, and covariates, as well as the training and testing set.

208 | Chapter 7: Metalearners



Once you have all of that, constructing pretty much all the metalearners will be
straightforward:

In [2]: y = "next_mnth_pv"
        T = "mkt_email"
        X = list(data_rnd.drop(columns=[y, T]).columns)

        train, test = data_biased, data_rnd
        

Now that you have everything set, let’s see our first metalearner.

Causal Inference Libraries
All of the following metalearners are implemented in most causal inference packages.
However, since they are very simple to code, I’ll not rely on external libraries, but
instead teach you how to build them from the ground up. Also, at the time of this
writing, all the causal inference packages are in their early stage, making it hard to
predict which one will attain dominance in the industry. This doesn’t mean you
shouldn’t check them out for yourself, of course. Two that I particularly like are
Microsoft’s econml and Uber’s causalml.

T-Learner
If you have a categorical treatment, the first learner you should try is the T-learner. It
is pretty straightforward and I’m guessing it is something you thought about already.
It fits one outcome model μt x  for every treatment in order to estimate the potential
outcome Yt. In the binary case, there are only two models that you need to estimate
(hence the name T):

μ0 x = E Y T = 0, X

μ1 x = E Y T = 1, X

Once you have those models, you can make counterfactual predictions for each treat‐
ment and get the CATE as follows:

τ x i = μ1 Xi − μ0 Xi

Figure 7-1 shows a diagram of this learner.

Metalearners for Discrete Treatments | 209



Figure 7-1. A T-learner trains an ML model on T = 1 and another at T = 0; at predic‐
tion time, it uses both models to estimate the difference between treatment and control

To code it, I’ll use boosted regression trees for the outcome models. Specifically, I’ll
use LGBMRegressor, which is a very popular regression model. I’m also using the
default parameters, but feel free to optimize this if you wish too:

In [3]: from lightgbm import LGBMRegressor

        np.random.seed(123)

        m0 = LGBMRegressor()
        m1 = LGBMRegressor()

        m0.fit(train.query(f"{T}==0")[X], train.query(f"{T}==0")[y])
        m1.fit(train.query(f"{T}==1")[X], train.query(f"{T}==1")[y]);
        

Now that I have the two models, making CATE predictions on the test set is pretty
easy:

In [4]: t_learner_cate_test = test.assign(
            cate=m1.predict(test[X]) - m0.predict(test[X])
        )
        

To evaluate this model, I’m using the relative cumulative gain curve and the area
under that curve, both concepts that you learned in Chapter 6. Recall that this evalua‐
tion method only cares if you sort customers correctly, from the one with the highest
treatment effect to the one with the lowest:

210 | Chapter 7: Metalearners



The T-learner works just fine in this dataset. It looks like it can produce a pretty good
ordering of customers by CATE, as you can see by the curved cumulative gain curve.

In general, the T-learner tends to be a reasonable first choice, mainly owing to its
simplicity. But it has a potential issue that might manifest depending on the situation:
it is prone to regularization bias.

Consider a situation where you have lots of data for the untreated and very little data
for the treated. This is pretty common in many applications where the treatment is
expensive. Now suppose you have some nonlinearity in the outcome Y, but the treat‐
ment effect is constant. This is depicted on the first plot in the following image:

Metalearners for Discrete Treatments | 211



If the data looks like this, with very few treated observations compared to untreated
ones, there’s a good chance the μ1 model will end up being simple to avoid overfitting.
In contrast, μ0 will be more complicated, but that’s OK because the abundance of data
prevents overfitting. Importantly, this can happen even if you use the same hyper‐
parameters for both models. For instance, to generate the preceding figures, I used an
LGBM Regressor with min_child_samples=25 and everything else set to the default. 
A lot of ML algorithms self-regularize when dealing with fewer data points, as is the
case of min_child_samples. It forces the tree in the LGBM to have at least 25 samples
in each leaf node, causing the tree to be smaller if the sample size is also small.

Self-regularization makes a lot of sense from a machine learning standpoint. If you
have little data, you should use simpler models. So much so that both models in the
preceding image have pretty decent predictive performance, as they are each opti‐
mized for the sample size they have. However, if you use these models to compute the
CATE τ = μ1 X − μ0 X , the nonlinearity of μ0 X  minus the linearity of μ1 X  will
result in a nonlinear CATE (dashed line minus the solid line), which is wrong, since
the CATE is constant and equal to 1 in this case. You can see this happening in the
second plot in the preceding image.

What happens here is that the model for the untreated can pick up the nonlinearity,
but the model for the treated cannot, because it is regularized to deal with a small
sample size. Of course, you could use less regularization on that model, but then it
runs into the risk of overfitting. Seems like you are caught between a rock and a hard
place here. How can you deal with this? Here is where the X-learner comes in.

See Also

The issue outlined here is further explored in the paper “Meta-
learners for Estimating Heterogeneous Treatment Effects using
Machine Learning,” by Kunzel et al.

X-Learner
The X-learner is significantly more complex to explain than the previous learner, but
its implementation is quite simple, so don’t worry if you don’t understand it at first.
The X-learner has two stages and a propensity score model. The first one is identical
to the T-learner. First, you split the samples into treated and untreated and fit a model
for each group:

μ0 X ≈ E Y T = 0, X

μ1 X ≈ E Y T = 1, X

212 | Chapter 7: Metalearners



Now, things start to take a turn. For the second stage, you’ll first need to impute the
missing potential outcomes, using the models you’ve fitted earlier:

τ X, T = 0 = μ1 X, T = 0 − YT = 0

τ X, T = 1 = YT = 1 − μ0 X, T = 1

Then, you’ll fit two more models to predict those estimated effects. The idea is that
this second stage of models will approximate the CATE on the control and treated
populations:

μ X τ0 ≈ E τ X T = 0

μ X τ1 ≈ E τ X T = 1

In the illustrative data from before, the τ X, T = 0  and τ X, T = 1  are the data
points in the second plot. In the following image, I’m reproducing that same data,
alongside the predictive models models, μ X τ0 and μ X τ1. Notice that even though
you have more control data, τ X, T = 0  is wrong. That is because it was constructed
using μ1, which was fitted in a very small sample. Consequently, because τ X, T = 0
is wrong, μ X τ0 will also be misleading. In contrast, μ X τ1 will probably be correct,
since τ X, T = 1  is also correct, as it was generated using the μ0 model:

In summary, you have one model that is wrong because you’ve imputed the treatment
effects incorrectly and another model that is correct because you’ve correctly imputed
those values. Now, you need a way to combine the two in a way that gives more
weight to the correct model. For that, you can use a propensity score model. With it,
you can combine the two second stage models as follows:

Metalearners for Discrete Treatments | 213



τ x = μ X τ0e x + μ X τ1 1 − e x

In this example, since there are very few treated units, e x  is very small, which gives
a very small weight to the wrong CATE model, μ X τ0. In contrast, 1 − e x  is close to
1, so you will give more weight to the correct CATE model μ X τ1. More generally,
this weighted average using the propensity score will favor the treatment effect esti‐
mates that were obtained from the μt model that was trained using more data.

The following image shows the estimated CATE given by the X-learner, as well as the
weights assigned to each data point. Notice how it practically discards the wrong data:

As you can see, compared to the T-learner, the X-learner does a much better job in
correcting the wrong CATE estimated at the nonlinearity. In general the X-learner
performs better when a treatment group is much larger than the other.

I know this might be a lot to digest, but hopefully it will be clearer when you look at
the code. Figure 7-2 summarizes this learner.

Another thing you can try is the domain adaptation learner. It is the X-learner, but
using the propensity score model to estimate μt X  with weights set to 1/P T = t .

214 | Chapter 7: Metalearners



Figure 7-2. An X-learner trains two stages of ML models plus a propensity score model;
at prediction time, it uses only the models from the second stage and the propensity score
model

Let’s see how to code all of this. Here, you have the first stage, which is exactly the
same as the T-learner. If you plan on using the propensity score for domain adapta‐
tion, you need to reweight the training sample by 1/P T = t , so now is also the time
to fit that propensity score:

In [5]: from sklearn.linear_model import LogisticRegression
        from lightgbm import LGBMRegressor

        # propensity score model
        ps_model = LogisticRegression(penalty='none')
        ps_model.fit(train[X], train[T])

        
        # first stage models
        train_t0 = train.query(f"{T}==0")
        train_t1 = train.query(f"{T}==1")

        m0 = LGBMRegressor()
        m1 = LGBMRegressor()

        np.random.seed(123)

        m0.fit(train_t0[X], train_t0[y],
               sample_weight=1/ps_model.predict_proba(train_t0[X])[:, 0])

Metalearners for Discrete Treatments | 215



        m1.fit(train_t1[X], train_t1[y],
               sample_weight=1/ps_model.predict_proba(train_t1[X])[:, 1]);
        

Next, you need to predict the treatment effect and fit the second stage models on
those predicted effects:

In [6]: # second stage
        tau_hat_0 = m1.predict(train_t0[X]) - train_t0[y]
        tau_hat_1 = train_t1[y] - m0.predict(train_t1[X])

        m_tau_0 = LGBMRegressor()
        m_tau_1 = LGBMRegressor()

        np.random.seed(123)

        m_tau_0.fit(train_t0[X], tau_hat_0)
        m_tau_1.fit(train_t1[X], tau_hat_1);
        

Finally, once you have all of that, you can combine the predictions from the second-
stage models using the propensity score model to obtain the CATE. All of which can
be estimated on the test set:

In [7]: # estimate the CATE
        ps_test = ps_model.predict_proba(test[X])[:, 1]

        x_cate_test = test.assign(
            cate=(ps_test*m_tau_0.predict(test[X]) +
                  (1-ps_test)*m_tau_1.predict(test[X])
                 )
        )
        

Let’s see how the X-learner does in terms of the cumulative gain. In this data set, the
treatment and control are almost the same size, so don’t expect a huge difference. The
issue the X-learner tries to correct probably does not manifest here:

216 | Chapter 7: Metalearners



As expected, the X-learner performance is not very different from what you got with
the T-learner. In fact, it slightly underperforms it, in terms of the area under the
curve. Keep in mind that the quality of these learners is situation-dependent. Like I
said earlier, in this specific data, both the treatment and control have a decent enough
sample size so as to not run into the type of problem that the X-learner tries to solve.
This might explain the similar performance between the two models.

Metalearners for Continuous Treatments
As always, when the treatment is continuous, things can get a bit complicated. It is no
different with the metalearners. As a running example, let’s use the data from the pre‐
vious chapter. Recall that it has three years’ worth of data from a chain of restaurants.
The chain randomized discounts on six of its restaurants and it now wants to know
which are the best days to give more discounts. To answer this question, you need to
understand on which days customers are more sensitive to discounts (more sensitive
to prices). If the restaurant chain can learn this, they will be better equipped to decide
when to give more or fewer discounts.

As you can see, this is a problem where you need to estimate the CATE. If you man‐
age to do so, the company can use your CATE predictions to decide on a discount
policy—the higher the predicted CATE, the more customers are sensitive to dis‐
counts, so the higher the discounts should be:

In [8]: data_cont = pd.read_csv("./data/discount_data.csv")
        data_cont.head()
        

rest_id day month weekday ... is_nov competitors_price discounts sales
0 0 2016-01-01 1 4 ... False 2.88 0 79.0
1 0 2016-01-02 1 5 ... False 2.64 0 57.0
2 0 2016-01-03 1 6 ... False 2.08 5 294.0
3 0 2016-01-04 1 0 ... False 3.37 15 676.5
4 0 2016-01-05 1 1 ... False 3.79 0 66.0

In this data, discounts is the treatment and sales is the outcome. You also have some
engineered date features, like the month, the day of the week, if it is a holiday and so
on. Since the goal here is CATE prediction, it is probably best to split your dataset
into a training and a test set. Here, you can take advantage of the time dimension and
use it to create those sets:

In [9]: train = data_cont.query("day<'2018-01-01'")
        test = data_cont.query("day>='2018-01-01'")
        

Metalearners for Continuous Treatments | 217



Now that you are familiar with the data, let’s see which of the metalearners can deal
with this continuous treatment.

S-Learner
The first learner you should try is the S-learner. This is the simplest learner there is.
You’ll use a single (hence the S) machine learning model μs to estimate:

μ x = E Y T, X

To do so, you will include the treatment as a feature in the model that tries to predict
the outcome Y. That’s pretty much it:

In [10]: X = ["month", "weekday", "is_holiday", "competitors_price"]
         T = "discounts"
         y = "sales"

         np.random.seed(123)
         s_learner = LGBMRegressor()
         s_learner.fit(train[X+[T]], train[y]);
         

But this model does not output a treatment effect directly. Rather, it outputs counter‐
factual predictions. That is, it can make predictions under different treatment
regimes. If the treatment were binary, this model would still work and the difference
in predictions between the test and control will be the CATE estimate:

τ x i = Ms Xi, T = 1 − Ms Xi, T = 0

Figure 7-3 contains a diagram that explain what it would look like.

218 | Chapter 7: Metalearners



Figure 7-3. An S-learner is simply an ML model that has the treatment as one of its
features

In the continuous case, you have to do a bit of extra work. First, you need to define a
grid of treatments. In the example, the discounts go from zero to about 40%, so you
can try a [0, 10, 20, 30, 40] grid. Next, you need to expand the data you want to
make predictions on so that each line gets one copy for each treatment value in the
grid. The easiest way I can find to do that is to cross-join a data frame with the grid
values into the data where I want to make predictions—the test set. In pandas, you
can do a cross-join by using a constant key. This will replicate each line in the original
data, changing only the treatment value. Finally, you can use your fitted S-learner to
make counterfactual predictions in this expanded data. Here is a simple piece of code
to do all of that:

In [11]: t_grid = pd.DataFrame(dict(key=1,
                                    discounts=np.array([0, 10, 20, 30, 40])))

         test_cf = (test
                    .drop(columns=["discounts"])
                    .assign(key=1)
                    .merge(t_grid)
                    # make predictions after expansion
                    .assign(sales_hat = lambda d: s_learner.predict(d[X+[T]])))

         test_cf.head(8)
         

Metalearners for Continuous Treatments | 219



rest_id day month weekday ... sales key discounts sales_hat
0 0 2018-01-01 1 0 ... 251.5 1 0 67.957972
1 0 2018-01-01 1 0 ... 251.5 1 10 444.245941
2 0 2018-01-01 1 0 ... 251.5 1 20 793.045769
3 0 2018-01-01 1 0 ... 251.5 1 30 1279.640793
4 0 2018-01-01 1 0 ... 251.5 1 40 1512.630767
5 0 2018-01-02 1 1 ... 541.0 1 0 65.672080
6 0 2018-01-02 1 1 ... 541.0 1 10 495.669220
7 0 2018-01-02 1 1 ... 541.0 1 20 1015.401471

In the previous step, you’ve essentially estimated a coarse version of the treatment
response function Y t  for each unit. You can even plot this curve for a handful of
units (days, in our case) to see what they look like. In the following plot, you can see
that the estimated response function for 2018-12-25—that is, Christmas—is steeper
than the one for a day like 2018-06-18. This means that your model learned that cus‐
tomers are more sensitive to discounts on Christmas, compared to that particular day
in June:

Whether those counterfactual predictions are correct is a whole other issue. To evalu‐
ate this model, you first need to realize that you still don’t have a CATE prediction.
This means that the evaluation methods you learned in Chapter 6 can’t be used here.
In order to get a CATE prediction, you have to somehow summarize the unit level
curves into a single number that represents the treatment effect. Surprisingly—or not
that much—linear regression is a good way of doing that. Simply put, you can run a
regression for each unit and extract the slope parameter on the treatment as your
CATE estimate.

Since all you care about is the slope parameter, you can do this much more efficiently,
using the formula for the slope of the single variable linear regression:

β = Cov t, y /Var t

220 | Chapter 7: Metalearners



Let’s see the code to do that. First, I’m defining a function that summarizes each indi‐
vidual curve into a slope parameter. Then, I’m grouping the expanded test data by the
restaurant ID and day and applying the slope function to each of those units. This
gives me a pandas series, with indexes rest_id and day. I’m naming this series cate.
Finally, I’m joining the series into the original test set (not the expanded one) to get a
CATE prediction for each day and restaurant in the testing set:

In [12]: from toolz import curry

         @curry
         def linear_effect(df, y, t):
             return np.cov(df[y], df[t])[0, 1]/df[t].var()

         
         cate = (test_cf
                 .groupby(["rest_id", "day"])
                 .apply(linear_effect(t="discounts", y="sales_hat"))
                 .rename("cate"))

         test_s_learner_pred = test.set_index(["rest_id", "day"]).join(cate)

         test_s_learner_pred.head()
         

month weekday weekend ... competitors_price discounts sales cate

rest_id day
0 2018-01-01 1 0 False ... 4.92 5 251.5 37.247404

2018-01-02 1 1 False ... 3.06 10 541.0 40.269854
2018-01-03 1 2 False ... 4.61 10 431.0 37.412988
2018-01-04 1 3 False ... 4.84 20 760.0 38.436815
2018-01-05 1 4 False ... 6.29 0 78.0 31.428603

Now that you have a CATE prediction, you can use the methods you learned from the
previous chapter to validate your model. Here, let’s stick with the cumulative gain:

Metalearners for Continuous Treatments | 221



As you can see from the cumulative gain, the S-learner, although simple, can perform
OK on this dataset. Again, keep in mind that this performance is highly particular to
this dataset. This is a particularly easy dataset, as you have lots of random data, which
you can use even to train your learner. In practice, I find that the S-learner is a good
first bet for any causal problem, mostly due to its simplicity. It also tends to perform
OK, even if it doesn’t have random data to train. Moreover, the S-learner supports
both binary and continuous treatment, making it an excellent default choice.

The major disadvantage of the S-learner is that it tends to bias the treatment effect
toward zero. Since the S-learner employs what is usually a regularized machine learn‐
ing model, that regularization can restrict the estimated treatment effect.

The following plot replicates a result from the paper, “Double/Debiased/Neyman
Machine Learning of Treatment Effects,” by Chernozhukov et al. To make this plot, I
simulated data with 20 covariates and a binary treatment with a true ATE of 1. I then
tried to estimate that ATE using an S-learner. I repeated this simulation and estima‐
tion steps 500 times and plotted the distribution of the estimated ATE alongside the
true ATE:

You can see that the distribution of estimated ATEs is concentrated to the left of the
true ATE, being biased toward zero. In other words, the true causal effect is fre‐
quently bigger than the estimated one.

Even worse, if the treatment is very weak relative to the impact other covariates play
in explaining the outcome, the S-learner can discard the treatment variable com‐
pletely. Notice that this is highly related to the chosen ML model you employ. The
greater the regularization, the greater the problem. A way around this, proposed in
the same paper by Chernozhukov et al., is Double/Debiased Machine Learning, or the
R-learner.

222 | Chapter 7: Metalearners



Double/Debiased Machine Learning
Double/Debiased ML or the R-learner can be seen as a buffed version of the Frisch-
Waugh-Lovell theorem. The idea is very simple—use ML models when constructing
the outcome and treatment residuals:

Yi − μy Xi = τ · Ti − μt Xi + �i

where μy Xi  is estimating E Y X  and μt Xi  is estimating E T X .

Since the ML models can be super flexible, they are better suited to capture interac‐
tions and nonlinearities when estimating the Y and T residuals while still maintain‐
ing an FWL-style orthogonalization. This means you don’t have to make any
parametric assumption about the relationship between the covariates X and the out‐
come Y nor between the covariates and the treatment in order to get the correct treat‐
ment effect. Provided you don’t have unobserved confounders, you can recover the
ATE with the following orthogonalization procedure:

1. Estimate the outcome Y with features X using a flexible ML regression model μy.

2. Estimate the treatment T with features X using a flexible ML regression model μt.

3. Obtain the residuals Y = Y − μy X  and T = T − μt X .

4. Regress the residuals of the outcome on the residuals of the treatment
Y = α + τT, where τ is the causal parameter ATE, which you can estimate, for
example, with OLS.

The power you gain with ML is flexibility. ML is so powerful that it can capture com‐
plicated functional forms in the nuisance relationships. But that flexibility is also
troublesome, because it means you now have to take into account the possibility of
overfitting. The paper by Chernozhukov et al. has a much more in-depth and rigor‐
ous explanation about how overfitting can be troublesome and I definitely recom‐
mend you check it out. But here, I’ll go on with a more intuition-based explanation.

To see the issue, suppose that your μy model is overfitting. The result is that the resid‐
ual Y will be smaller than it should be. It also means that μy is capturing more than
only the relationship between X and Y. Part of that something more is the relation‐
ship between T and Y, and if μy is capturing some of that, the residual regression will
be biased toward zero. In other words, μy is capturing the causal relationship and not
leaving it to the final residual regression.

Now, to see the problem in overfitting μt, notice that it will explain more of the var‐
iance in T than it should. As a result, the treatment residual will have less variance
than it should. If there is less variance in the treatment, the variance of the final

Metalearners for Continuous Treatments | 223



estimator will be high. It is as if the treatment is the same for almost everyone, or if
the positivity assumption was violated. If everyone has almost the same treatment
level, it becomes very difficult to estimate what would happen under different treat‐
ment.

Those are the problems you have when using ML models. But how can you work
around them? The answer lies in cross predictions and out-of-fold residuals. Instead
of getting the residuals in the same data used to fit the model, you’ll partition your
data into K folds, estimating the model in K–1 of those folds and getting the residuals
in the fold that was left out. Repeat the same procedure K times to get the residuals
for the entire dataset. With this approach, even if the model does overfit, it won’t
drive the residuals to zero artificially.

This looks complicated in theory but it is actually very easy to code. You can use the
cross_val_predict function from sklearn to get out-of-fold predictions from any
machine learning model. Here is how you can get those residuals with just a few lines
of code:

In [13]: from sklearn.model_selection import cross_val_predict

         X = ["month", "weekday", "is_holiday", "competitors_price"]
         T = "discounts"
         y = "sales"

         debias_m = LGBMRegressor()
         denoise_m = LGBMRegressor()

         t_res =  train[T] - cross_val_predict(debias_m,train[X],train[T],cv=5)
         y_res =  train[y] - cross_val_predict(denoise_m,train[X],train[y],cv=5)
         

If you only cared about the ATE, you could simply regress the residual of the out‐
come on the residual of the treatment (just don’t trust those standard errors, as they
don’t account for the variance in estimating the residuals):

In [14]: import statsmodels.api as sm

         sm.OLS(y_res, t_res).fit().summary().tables[1]
         

coef std err t P>|t| [0.025 0.975]
discounts 31.4615 0.151 208.990 0.000 31.166 31.757

But in this chapter, we are focusing on CATE. So how exactly do you get that with
Double-ML?

224 | Chapter 7: Metalearners



Double-ML for CATE estimation
To get CATE predictions from your Double-ML model, you’ll need a few adaptations.
Essentially, you need to allow the causal parameter τ to change depending on the
unit’s covariates:

Yi = μy Xi + τ Xi Ti − μt X + � i

where μy and μt are models that, respectively, predict the outcome and treatment
from the features X. If you rearrange the terms, you can isolate the error:

� i = Yi − μy Xi − τ Xi Ti − μt X

This is nothing short of awesome, because now you can call this a causal loss function.
Which means that, if you minimize the square of this loss, you’ll be estimating the
expected value of τ Xi , which is the CATE you wanted:

Ln τ x = 1
n ∑

i = 1

n
Yi − My Xi − τ Xi Ti − Mt X 2

This loss is also called the R-Loss, since it’s what the R-learner minimizes. OK, but
how do you minimize this loss function? There are multiple ways, actually, but here
you’ll see the simplest one. First, to declutter the technical notation, let’s rewrite the
loss function using the residualized version of treatment and outcome:

Ln τ x = 1
n ∑i = 1

n Y i − τ Xi Ti
2

Finally, you can do some algebraic parkour to take Ti out of the parentheses and iso‐
late τ Xi  in the square part of the loss function:

Ln τ x = 1
n ∑

i = 1

n
Ti

2 Yi
Ti

− τ Xi

2

Minimizing the preceding loss is equivalent to minimizing what is inside the paren‐
theses, but weighting each term by Ti

2. Any predictive ML model can do that.

But wait a minute! You saw this already! This is the transformed target you used to
compute the mean square error in Chapter 6! Indeed it is. Then, I asked you to trust
my word for it, but now I offer you the reason why it works. Again, coding this up is
very simple:

Metalearners for Continuous Treatments | 225



In [15]: y_star = y_res/t_res
         w = t_res**2

         cate_model = LGBMRegressor().fit(train[X], y_star, sample_weight=w)

         test_r_learner_pred = test.assign(cate = cate_model.predict(test[X]))
         

What I really like about this learner is that it directly outputs CATE estimates. There
is no need for all those extra steps you had to take with the S-learner. Also, as you can
see in the following plot, it does a pretty decent job in terms of ordering the CATE, as
measured by the cumulative gain:

In this example, Double/Debiased-ML has a pretty similar performance to the S-
learner. That is probably because the treatment is strong enough so that the ML
model in S-learner assigns high importance to it. Also, the treatment is randomized,
which means that the μt model in Double-ML is not doing anything really. So, in
order to get a better understanding of the true power of Double-ML, let’s go through
a more illustrative example.

Visual intuition for Double-ML
Consider the following simulated data. In it, you have two covariates: xc is a con‐
founder and xh is not. Also, xh drives effect heterogeneity. There are only three values
for xh: 1, 2, and 3. The CATE for each of them is 2, 3, and 4, respectively, since the
treatment effect is given by t + txh. Also, since xh is uniformly distributed, the ATE is
just a simple average of the CATEs—that is, 3. Finally, notice how the confounder xc
affects both treatment and outcome nonlinearly:

In [16]: np.random.seed(123)
         n = 5000

         x_h = np.random.randint(1, 4, n)
         x_c = np.random.uniform(-1, 1, n)

226 | Chapter 7: Metalearners



         t = np.random.normal(10 + 1*x_c + 3*x_c**2 + x_c**3, 0.3)
         y = np.random.normal(t + x_h*t - 5*x_c - x_c**2 - x_c**3, 0.3)

         df_sim = pd.DataFrame(dict(x_h=x_h, x_c=x_c, t=t, y=y))
         

Here is a plot for this data. Each blob of points is a group defined by xh. The color
coding represents the value of the confounder xc. Notice the nonlinear shape in it:

Now, let’s see how Double-ML processes this data. First, let’s get the residuals T and
Y. Since you don’t have a lot of data here, constrain your ML models to have trees
with max_depth=3. I’m including only xc in the debiasing model, since that is the only
confounder. The denoise model has both covariates, as both cause the outcome and
including them will reduce noise:

In [17]: debias_m = LGBMRegressor(max_depth=3)
         denoise_m = LGBMRegressor(max_depth=3)

         t_res = cross_val_predict(debias_m, df_sim[["x_c"]], df_sim["t"],
                                   cv=10)

         y_res = cross_val_predict(denoise_m, df_sim[["x_c", "x_h"]],df_sim["y"],
                                   cv=10)

         df_res = df_sim.assign(
             t_res =  df_sim["t"] - t_res,
             y_res =  df_sim["y"] - y_res
         )
         

Once you have those residuals, the confounding bias due to xc should be gone. Even
though it is nonlinear, our ML model should be able to capture that nonlinearity and

Metalearners for Continuous Treatments | 227



get rid of all the bias. So much so that if you run a simple regression of Y on T, it
should give you the correct ATE:

In [18]: import statsmodels.formula.api as smf

         smf.ols("y_res~t_res", data=df_res).fit().params["t_res"]
         

Out[18]: 3.045230146006292
         

Next, let’s turn our attention to CATE estimation. The left plot in the following figure
shows the relationship between the residuals and color codes each point by the con‐
founder xc. Notice that there are no patterns in the color of this plot. This shows that
all confounding due to xc was removed. The data looks as if the treatment was ran‐
domly assigned.

The next plot color codes the same relationship by the xh, the feature that drives treat‐
ment heterogeneity. The darkest points (xh = 1) seem to be less sensitive to the treat‐
ment, as shown by the lower slope. In contrast, the lighter ones (xh = 3) seem to be
more sensitive to the treatment. Looking at this plot, can you think of a way to extract
those sensitivities?

To answer this question, notice that both residuals are centered around zero. This
means that the lines that dictate the slope of all the groups defined by xh should cross
zero. Now, recall that the slope of a line can be estimated from two points as Δy/Δt.
But, since the intercept of this line should be zero, this simplifies to y/t. Hence, you
can see the Y* target from Double-ML as the slope of the line that goes through the
point and has zero as its intercept.

228 | Chapter 7: Metalearners



But there is a catch. Both T and Y have a mean close to zero. You know what happens
when you divide by a number close to zero? That’s right, it can be very unstable, giv‐
ing you tremendous amounts of noise. Here is where the weights T2 come into play.
By giving more importance to points with high values of T, you are essentially focus‐
ing on the region where the variance is low. To see that this works, you can compute
the average of Y*, weighted by T2, for each value of xh. This will get you pretty close
to the true CATE of 2, 3, and 4, for xh = 1, 2, 3, respectively:

In [19]: df_star = df_res.assign(
             y_star = df_res["y_res"]/df_res["t_res"],
             weight = df_res["t_res"]**2,
         )

         for x in range(1, 4):
             cate = np.average(df_star.query(f"x_h=={x}")["y_star"],
                               weights=df_star.query(f"x_h=={x}")["weight"])
             
             print(f"CATE x_h={x}", cate)
         

Out[19]: CATE x_h=1 2.019759619990067
         CATE x_h=2 2.974967932350952
         CATE x_h=3 3.9962382855476957
         

You can also see what I’m talking about in the plot of Y* by T. Here, I’m again color
coding by xh, but now I’m adding weights equal to T2. I’ve also included the average
estimated CATE for each group as a horizontal line:

Metalearners for Continuous Treatments | 229



I like this plot because it clearly shows the role of the weights. The variance of Y*
increases a lot as you approach the center of the plot. You can’t see it because I’ve
limited the range of the y-axis, but you actually have points that go all the way to both
–2,000 and 2,000! Fortunately, those are all close to T = 0, so they have very small
weights. And now you know on a more intuitive level what is going on with Double-
ML.

Tree-Based Learners and Neural Net Learners
This chapter doesn’t intend to be an exhaustive list of all the meta-learners there cur‐
rently are. I’ve only included the ones that I personally find most useful. However,
beyond the four learners presented here, there are some others that are worth
mentioning.

First, Susan Athey and Stefan Wager did a lot of pioneering work on effect heteroge‐
neity using modified decision trees. You can find tree-based CATE learners in causal
inference libraries such as econml and causalml. I did not include them in this chap‐
ter because, at the time of this writing, I’ve never managed to use them successfully.
Mostly because the implementations currently available are in pure Python, which
makes them quite slow to fit on large datasets. I do expect that sometime soon a faster
implementation will arise, making tree-based learners an interesting option to try out.
If you want to learn more about tree-based learners, I suggest the documentation of
the causal inference packages that implement them. There is also a fantastic online
series of videos from Stanford Business School, by Athey and Wager, called Machine
Learning & Causal Inference: A Short Course.

Second, there are neural network–based algorithms you can try. However, I think
those are still in their infancy and the amount of complexity they bring is not worth
the potential gain. At least not yet. Still, if you want to venture yourself in this litera‐
ture, I recommend you check the papers “Nonparametric Estimation of Heterogene‐
ous Treatment Effects: From Theory to Learning Algorithms”, by Curth and Schaar,
and “Learning Representations for Counterfactual Inference,” by Shalit et al.

Key Ideas
This chapter expands on the idea of learning group-level treatment effects τ xi .
Instead of just interacting the treatment variable with the covariates X in a regression
model, you learned how to repurpose generic machine learning models for condi‐
tional average treatment effect (CATE) estimation: the so-called metalearners. Specif‐
ically, you learned about four meta-learners, two that work only with categorical
treatments and two that work with any type of treatment.

230 | Chapter 7: Metalearners



First, the T-learner fits a machine learning model to predict the Y for each treatment
T. Then, the resulting outcome models μt can be used to estimate the treatment
effect. For instance, in the case of a binary treatment:

τ Xi = μ1 Xi − μ0 Xi

the T-learner works fine if you have lots of observations for all treatment levels.
Otherwise, the model estimated in a small dataset can suffer from regularization bias.
The next learner you saw, the X-learner, tried to address this issue by using a propen‐
sity score model to lower the importance of any μt trained on a small sample.

To handle continuous treatment, you learned about the S-learner, which simply esti‐
mates E Y T, X . That is, it predicts the outcome with the treatment included as a
feature. This model can be used to make counterfactual predictions of Yt, given a grid
of treatment values. This results in a unit-specific coarse treatment response function,
which later needs to be summarized into a single slope parameter.

Last, but not least, you learned about Double-ML. The idea was to use generic ML
models and out-of-fold prediction to get treatment and outcome residuals,
T − E T X  and T − E Y X , respectively. This can be understood as a buffed version
of FWL orthogonalization. Once you have those residuals—call them T and Y—you
could construct a target that approximates τ xi :

Y* = Y /T

Using any ML model to predict that target while also using weights T2 resulted in a
ML model that could output CATE predictions directly.

Finally, it’s worth remembering that all these methods rely on the unconfoundedness
assumptions. It doesn’t matter how cool-sounding the algorithm you are trying to use
for CATE estimation is; for them to be able to remove bias, you need to have in your
data all the relevant confounders. Specifically, unconfoundedness allows you to inter‐
pret rates of change on the conditional expectation as if it was the slope of the treat‐
ment response function:

∂
∂t E Y t X = ∂

∂t E Y T = t, X

Key Ideas | 231





PART IV

Panel Data





CHAPTER 8

Difference-in-Differences

After discussing treatment effect heterogeneity, it’s time to switch gears a bit, back
into average treatment effects. Over the next few chapters, you’ll learn how to lever‐
age panel data for causal inference.

A panel is a data structure that has repeated observations across time. The fact that
you observe the same unit in multiple time periods allows you to see, for the same
unit, what happens before and after a treatment takes place. This makes panel data a
promising alternative to identifying the causal effects when randomization is not pos‐
sible. When you have observational (nonrandomized) data and the likely presence of
unobserved confounders, panel data methods are as good as it gets in terms of prop‐
erly identifying the treatment effect.

In this chapter, you’ll see why panel data is so interesting for causal inference. Then,
you’ll learn the most famous causal inference estimator for panel data: difference-in-
differences—and many variations of it. To keep things interesting, you’ll do all of this
in the context of figuring out the effect of an offline marketing campaign.

Data Regimes

In contrast to panel data or longitudinal design, cross-sectional data
is characterized by each unit appearing only once. A third category,
which falls between the two, is known as repeated cross-sectional
data. This type of data involves multiple time entries, but the units
in each entry are not necessarily the same. Up until this point, you
have worked with data that includes repeated observations of the
same unit over time (for example, when trying to determine the
effect of discounts on restaurant sales), but for the sake of simplic‐
ity, we treated that data as cross-sectional. This is sometimes
referred to as pooled cross-section.

235



Panel Data
To motivate the use of panel data, I’ll mostly talk about causal inference applications
to marketing. Marketing is particularly interesting for its notorious difficulty in run‐
ning randomized experiments. In marketing, you often can’t control who receives the
treatment, that is, who sees your advertisements. When a new user comes to your site
or downloads your app, you have no good way of knowing if that user came because
they saw one of your campaigns or due to some other reason. Even if you know that
the customer clicked one of your marketing links, it’s hard to tell if they wouldn’t have
gotten your product regardless. For example, if the customer clicked your sponsored
Google link, they might just as well have scrolled down a bit and clicked the unpaid
link, if they were really looking for your product.

The problem is even bigger with offline marketing. How can you know if placing
some billboards in a city brings value in excess of its costs? Because of that, a com‐
mon practice in marketing is to run geo-experiments: you can deploy a marketing
campaign to some geographical region but not others and compare them. In this
design, panel data methods are particularly interesting: you can collect data on an
entire geography (unit) across multiple periods of time.

Like I’ve said, panel data is when you have multiple units i over multiple periods of
time t. In some marketplace websites, units might be the person and t the days or
months. But the unit doesn’t need to be a single customer. For example, in the context
of an offline marketing campaign, i could be cities where you can place a billboard for
your product.

So you can follow along with something more tangible, the following data frame,
mkt_data, has marketing data in a panel format. Each line is a (day, city)
combination:

In [1]: import pandas as pd
        import numpy as np

        mkt_data = (pd.read_csv("./data/short_offline_mkt_south.csv")
                    .astype({"date":"datetime64[ns]"}))

        mkt_data.head()
        

date city region treated tau downloads post
0 2021-05-01 5 S 0 0.0 51.0 0
1 2021-05-02 5 S 0 0.0 51.0 0
2 2021-05-03 5 S 0 0.0 51.0 0
3 2021-05-04 5 S 0 0.0 50.0 0
4 2021-05-05 5 S 0 0.0 49.0 0

236 | Chapter 8: Difference-in-Differences



This data frame is sorted by date and city. The outcome variable you care about is
number of downloads. Since t will be used to represent time, to avoid confusion,
from now on, I’ll use D to denote the treatment. Also, in the panel data literature, the
treatment is often referred to as an intervention. I’ll use both terms interchangeably.
In this example, the marketing team launched an offline campaign on the cities with
Di = 1. As for the time dimension, let’s establish that T will be the number of periods,
with Tpre being the periods before the intervention. You can think about the time vec‐
tor as t = 1, 2, . . . , Tpre, Tpre + 1, . . . , T . Periods after the treatment, Tpre, . . . , T,
are conveniently called post intervention. To simplify the notation, I’ll often use a
Post dummy, which is 1 when t > Tpre and 0 otherwise.

The intervention only happens to treated units, D = 1, at the post-intervention
period, t > Tpre. The combination of treatment and post intervention will be denoted
by W = D *� t > Tpre  or W = D * Post. Here is an example of what this looks like in
the marketing data:

In [2]: (mkt_data
         .assign(w = lambda d: d["treated"]*d["post"])
         .groupby(["w"])
         .agg({"date":[min, max]}))
        

date

min max

w
0 2021-05-01 2021-06-01
1 2021-05-15 2021-06-01

As you can see, the pre-intervention period is from 2021-05-01 to 2021-05-15 and the
post-intervention period, from 2021-05-15 to 2021-06-01.

This dataset also has a τ variable to denote the treatment effect. Since this data is
simulated, I know exactly what that effect is. I’ve included it in this dataset just for
you to check if the methods you’ll learn about are doing a good job in identifying the
causal effect. But don’t get used to it. In real life, you won’t have this luxury.

Now that you understand the data better and have learned a new bit of technical
notation, you can restate your goal more precisely. You want to understand the effect
of the offline marketing campaign on the cities that got treated, after the treatment
takes place:

ATT = E Yit 1 − Yit 0 D = 1, t > Tpre

Panel Data | 237



This is the ATT since you are only focusing on understanding the impact the cam‐
paign had on the cities with D = 1, after the campaign was launched t > Tpre. Since
Y it 1  is observable, you can achieve this goal by imputing the missing potential out‐
come E Y 0 D = 1, Post = 1 .

Figure 8-1 shows why panel data becomes particularly interesting when you represent
the observed outcomes in a unit-by-time matrix. This matrix highlights the fact that
Y 1  is only observable for treated units during the post-treatment period, while for
all other cells, you can observe Y 0 . Despite this, these cells can still be useful for
estimating the missing potential outcome E Y 0 D = 1, t > Tpre . You can leverage
the correlation between units by using the outcome of the control units in the post-
intervention period, and you can also leverage correlation across time by using the
treated units’ outcome in the pre-treatment period.

Figure 8-1. By observing the same units across multiple time periods, panel data allows
you to leverage the correlation between units and across time to impute the missing
potential outcome T 1

Figure 8-1 also shows why you should focus on ATT in most applications with panel
data: it’s much easier to impute Y 0  for the treated units. If instead you wanted the
ATC (average effect on the control), you would have to impute Y 1 . However, you
would only have one cell where that potential outcome is observable.

Now that you had your brief introduction to panel data, it’s time to explore some of
the machinery that leverages it to identify and estimate the treatment effect.

238 | Chapter 8: Difference-in-Differences



Canonical Difference-in-Differences
The basic idea behind difference-in-differences is to impute the missing potential
outcome E Y 0 D = 1, Post = 1  by using the baseline from the treated units, but
applying the evolution of the outcome (growth) from the control units:

E Y 0 D = 1, Post = 1 = E Y D = 1, Post = 0
+ E Y D = 0, Post = 1 − E Y D = 0, Post = 0

where you can estimate E Y 0 D = 1, Post = 1  by replacing the righthand side
expectations with sample averages. The reason this is called the difference-in-
differences (DID) estimator is because, if you substitute the preceding expression for
E Y 0 D = 1, Post = 1  in the ATT, you get, quite literally, the difference in
differences:

ATT = E Y D = 1, Post = 1 − E Y D = 1, Post = 0
− E Y D = 0, Post = 1 − E Y D = 0, Post = 0

Don’t let all those expectations scare you. In its canonical form, you can get the DID
estimate quite easily. First, you divide the time periods in your data into pre- and
post-intervention. Then, you divide the units in a treated and control group. Finally,
you can simply compute the averages of all the four cells: pre-treatment and control,
pre-treatment and treated, post-treatment and control, and post-treatment and
treated:

In [3]: did_data = (mkt_data
                    .groupby(["treated", "post"])
                    .agg({"downloads":"mean", "date": "min"}))

        did_data
        

downloads date

treated post
0 0 50.335034 2021-05-01

1 50.556878 2021-05-15
1 0 50.944444 2021-05-01

1 51.858025 2021-05-15

Those are all the numbers you need to get the DID estimate. For the treatment base‐
line, E Y D = 1, Post = 0 , you can index into the treatment with did_data.loc[1]
and then into the pre-treatment period with a follow up .loc[0]. To get the evolution
in the outcome for the control, E Y D = 0, Post = 1 − E Y D = 0, Post = 0 , you can

Canonical Difference-in-Differences | 239



index into the control with did_data.loc[0], compute the difference with .diff(),
and index into the last row with a follow-up .loc[1]. Adding the control trend
into the treated baseline gives you an estimate for the counterfactual
E Y 0 D = 1, Post = 1 . To get the ATT, you can subtract that from the average out‐
come of the treated in the post-intervention period:

In [4]: y0_est = (did_data.loc[1].loc[0, "downloads"] # treated baseline
                  # control evolution
                  + did_data.loc[0].diff().loc[1, "downloads"]) 

        att = did_data.loc[1].loc[1, "downloads"] - y0_est
        att
        

Out[4]: 0.6917359536407233
        

If you compare this number with the true ATT (filtering the treated units and the
post-treatment period), you can see that the DID estimate is quite close to what it
tries to estimate:

In [5]: mkt_data.query("post==1").query("treated==1")["tau"].mean()
        

Out[5]: 0.7660316402518457
        

PRACTICAL EXAMPLE

Minimum Wages and Employment
In the ’90s, David Card and Alan Krueger used a 2 × 2 DID to challenge the conven‐
tional economic theory that states that a rise in minimum wage leads to a decrease in
employment. They looked at data from fast-food restaurants in New Jersey and Penn‐
sylvania, before and after an increase in New Jersey’s minimum wage. The study
found no evidence of reduced employment due to the minimum wage increase. This
paper was incredibly influential and got revisited many times and that result proved
to be very robust. Eventually, due to its influence and for helping to popularize DID,
Card was awarded the Nobel Prize in 2021.

Diff-in-Diff with Outcome Growth
Another very interesting take on DID is to realize it is differentiating the data in the
time dimension. Let’s define the difference in the outcome across time for unit i as
Δyi = E yi t > Tpre − E yi t ≤ Tpre . Now, let’s convert your original data, which was
by time and unit, into a data frame with Δyi, where the time dimension has been dif‐
ferentiated out:

240 | Chapter 8: Difference-in-Differences



In [6]: pre = mkt_data.query("post==0").groupby("city")["downloads"].mean()
        post = mkt_data.query("post==1").groupby("city")["downloads"].mean()

        delta_y = ((post - pre)
                   .rename("delta_y")
                   .to_frame()
                   # add the treatment dummy
                   .join(mkt_data.groupby("city")["treated"].max()))

        delta_y.tail()
        

delta_y treated

city
192 0.555556 0
193 0.166667 0
195 0.420635 0
196 0.119048 0
197 1.595238 1

Next, you can use potential outcome notation to define the ATT in terms of Δy:

ATT = E Δy1 − Δy0 ,

which DID tries to identify by replacing Δy0 with the average of the control units:

ATT = E Δy D = 1 − E Δy D = 0

If you replace those expectations with sample averages, you’ll see that you get back
the same DID estimate you got before:

In [7]: (delta_y.query("treated==1")["delta_y"].mean() 
         - delta_y.query("treated==0")["delta_y"].mean())
        

Out[7]: 0.6917359536407155
        

This is an interesting take on DID because it makes very clear what it is assuming,
that is, E Δy0 = E Δy D = 0 , but we’ll talk more about this later.

Since this has all been very technical and full of math, I wanted to give you a more
visual understanding of DID by plotting the observed outcomes of the treated and
control group over time, alongside the estimated counterfactual outcome for the
treated unit. In the following image, the DID estimate for E Y 0 D = 1  is shown as
a dashed line. It was obtained by applying the trajectory from the control into the

Canonical Difference-in-Differences | 241



treatment baseline. The estimated ATT would then be the difference between the
estimated counterfactual outcome Y 0  and the observed outcome Y 1 , both in the
post-treatment period (difference between the dot and the cross):

Diff-in-Diff with OLS
Even though you can implement DID by hand, computing averages or taking deltas,
this wouldn’t be a respectable causal inference chapter if it didn’t include a fair
amount of linear regression. Not surprisingly, you can get the exact same DID esti‐
mator with a saturated regression model. First, let’s group your daily data by city and
period—post- and pre-treatment. Then, for each city and period combination, you
can get the average number of daily downloads. I’m also getting the start date for each
period and the treatment status for each city. The start date isn’t used in the estimator,
but it’s good for understanding when the treatment takes place:

In [8]: did_data = (mkt_data
                    .groupby(["city", "post"])
                    .agg({"downloads":"mean", "date": "min", "treated": "max"})
                    .reset_index())

        did_data.head()
        

city post downloads date treated
0 5 0 50.642857 2021-05-01 0
1 5 1 50.166667 2021-05-15 0
2 15 0 49.142857 2021-05-01 0
3 15 1 49.166667 2021-05-15 0
4 20 0 48.785714 2021-05-01 0

242 | Chapter 8: Difference-in-Differences



With this city by period dataset, you can estimate the following linear model:

Yit = β0 + β1Di + β2Postt + β3DiPostt + eit

and the parameter estimate β3 will be the DID estimate. To see why that is, notice that
β0 is the baseline of the control. In this case, β0 is the level of downloads in control
cities, prior to 2021-05-15. If you turn on the treated city dummy, you get β0 + β1. So
β0 + β1 is the baseline of treated cities, also before the intervention. β1 is simply the
difference in baseline between treated and control cities. If you turn the treatment
dummy off and turn the post-treatment dummy on, you get β0 + β2, which is the level
of the control cities after the intervention. β2 is then the trend of the control. It’s how
much the control grows from the pre- to the post-intervention period.

As a recap, β1 is the increment you get by going from the control to the treated, β2 is
the increment you get by going from the pre- to the post-treatment period. Finally, if
you turn both treated and post dummies on, you get β0 + β1 + β2 + β3. This is the
level of the treated cities after the intervention, which means that β3 is the increment
in the outcome that you get by going from treated to control cities and from pre- to
post-intervention period. In other words, it is the difference-in-differences estimator:

In [9]: import statsmodels.formula.api as smf

        smf.ols(
            'downloads ~ treated*post', data=did_data
        ).fit().params["treated:post"]
        

Out[9]: 0.691735953640
        

Diff-in-Diff with Fixed Effects
Yet another way to understand DID is with time- and unit-fixed effect model (two-
way fixed effects or TWFE). In this model, you have treatment effect τ, unit- and
time-fixed effects, αi and γt, respectively:

Yit = τWit + αi + γt + eit .

In order to declutter, I’m using Wit = DiPostt here.

If you estimate this model, the parameter estimate associated with W will match the
DID estimate you got earlier and recover the ATT. To do so, recall from Chapter 4
that you can estimate fixed effects by using dummies or by de-meaning the data.
Here, for the sake of simplicity, let’s just use the dummies approach. That is, let’s

Canonical Difference-in-Differences | 243



include city and period dummies with C(city) and C(post). Also, you need to create
W by multiplying the treated and the post dummies. Just remember that the
* operator creates the interaction between two terms and the terms by themselves.
Since you only want the interaction, you need the : operator:

In [10]: m = smf.ols('downloads ~ treated:post + C(city) + C(post)',
                     data=did_data).fit()

         m.params["treated:post"]
         

Out[10]: 0.691735953640
         

Once again, you get the exact same parameter estimate.

Multiple Time Periods
The canonical DID setting requires you to have only four data cells: pre- and post-
intervention, treated and control groups. But it doesn’t require that the pre and post
time periods be aggregated into a single block. Canonical DID only requires that you
have what is called a block design: a group of units that are never treated and a group
of units that are eventually treated at the same time period. That is, you can’t have the
treatment rolling out to units at different moments (you’ll learn about that shortly).
The marketing example you are working with has exactly this format, which means
you don’t have to aggregate it by a pre- and a post-treatment period. You can just use
it as is.

You can visualize this block design in the following figure, which plots the treatment
assignment for each city over time. It also shows the evolution of the outcome across
time so that you can get a better feeling of what DID is looking at. Namely, it is trying
to see if the difference between treated and control groups increases after the inter‐
vention takes place:

244 | Chapter 8: Difference-in-Differences



To get the DID estimate with this disaggregated data, you can use the exact same for‐
mulas as before. That is, you can either regress the outcome on a treated and post
dummies and the interaction between them:

In [11]: m = smf.ols('downloads ~ treated*post', data=mkt_data).fit()

         m.params["treated:post"]
         

Out[11]: 0.6917359536407226
         

Canonical Difference-in-Differences | 245



or you can use the fixed effect specification:

In [12]: m = smf.ols('downloads ~ treated:post + C(city) + C(date)',
                     data=mkt_data).fit()

         m.params["treated:post"]
         

Out[12]: 0.691735953640
         

I’ve just shown a bunch of ways to get the exact same DID estimate. By doing so, I
hope you can pool insights from all of them, increasing your chances of understand‐
ing what is going on. But if you look carefully, I’ve deliberately hidden the confidence
intervals from the regressions you just ran. That’s because the confidence intervals
from those regressions are probably wrong.

Inference
I said probably wrong because, in all honesty, doing inference with panel data is
incredibly tricky. There has been a lot of recent research on the topic, which is of
course nice, but it also highlights that it is something we as a field are still learning
how to do. The issue here is that you have N · T data points, but they are not inde‐
pendent and identically distributed, since the same unit appears multiple times. In
fact, the treatment is assigned to the unit, not to the time period, so you can argue
that your sample size is actually just N, not N · T, even though this last one is what
your regression will consider when computing standard errors.

To correct the overly optimistic standard errors from your regression, you can cluster
the standard errors by the unit (cities, in our example):

In [13]: m = smf.ols(
             'downloads ~ treated:post + C(city) + C(date)', data=mkt_data
         ).fit(cov_type='cluster', cov_kwds={'groups': mkt_data['city']})

         print("ATT:", m.params["treated:post"])
         m.conf_int().loc["treated:post"]
         

Out[13]: ATT: 0.6917359536407017
         

Out[13]: 0    0.296101
         1    1.087370
         Name: treated:post, dtype: float64
         

Clustering the errors will give you wider confidence intervals than no clustering at all:

In [14]: m = smf.ols('downloads ~ treated:post + C(city) + C(date)',
                     data=mkt_data).fit()

246 | Chapter 8: Difference-in-Differences



         print("ATT:", m.params["treated:post"])
         m.conf_int().loc["treated:post"]
         

Out[14]: ATT: 0.6917359536407017
         

Out[14]: 0    0.478014
         1    0.905457
         Name: treated:post, dtype: float64
         

Additionally, look what happens when you replace the daily data frame, mkt_data,
from the one that you’ve aggregated by unit and pre- and post-treatment periods:

In [15]: m = smf.ols(
             'downloads ~ treated:post + C(city) + C(date)', data=did_data
         ).fit(cov_type='cluster', cov_kwds={'groups': did_data['city']})

         print("ATT:", m.params["treated:post"])
         m.conf_int().loc["treated:post"]
         

Out[15]: ATT: 0.6917359536407091
         

Out[15]: 0    0.138188
         1    1.245284
         Name: treated:post, dtype: float64
         

The confidence interval gets even wider! This just shows that, even though the sam‐
ple size should come from the units and not from the time periods, having more time
periods per unit clusters can decrease the variance.

As you’ll see later in this chapter, some noncanonical flavors of DID won’t have a
standard way to compute confidence intervals. In those situations, you can choose to
bootstrap the entire estimation procedure. You just need to be a bit careful here. Since
you have repeated units, the model’s error for the same unit will be correlated. Hence,
you need to sample (with replacement) the entire unit. This procedure is called block
bootstrap. To implement it, you first need to write a function that samples units with
replacement:

In [16]: def block_sample(df, unit_col):
             
             units = df[unit_col].unique()
             sample = np.random.choice(units, size=len(units), replace=True) 
             
             return (df
                     .set_index(unit_col)
                     .loc[sample]
                     .reset_index(level=[unit_col]))
         

Canonical Difference-in-Differences | 247



Once you have this function, you can adapt the bootstrap code from Chapter 5 to
implement the block bootstrap:

In [17]: from joblib import Parallel, delayed

         def block_bootstrap(data, est_fn, unit_col,
                             rounds=200, seed=123, pcts=[2.5, 97.5]):
             np.random.seed(seed)
             
             stats = Parallel(n_jobs=4)(
                 delayed(est_fn)(block_sample(data, unit_col=unit_col))
                 for _ in range(rounds))
             
             return np.percentile(stats, pcts)
         

Finally, just to check if everything is working as expected, you can use this function to
calculate the 95% CI for the DID estimator applied to the marketing data. The result‐
ing CI is pretty similar to the one you got earlier, with standard errors clustered by
units. This is a good indicator that your block bootstrap function is working:

In [18]: def est_fn(df):
             m = smf.ols('downloads ~ treated:post + C(city) + C(date)',
                         data=df).fit()
             return m.params["treated:post"]

         block_bootstrap(mkt_data, est_fn, "city")
         

Out[18]: array([0.23162214, 1.14002646])
         

Before ending this section, I want to warn you that, although very convenient, there
are some issues with block bootstrap. For instance, if the number of treated units is
small, you might end up with a sample with no treated units. Again, inference with
panel data is a complex topic that I feel we don’t have a clear answer to yet.

See Also

If you want to learn more about it, you can check out the paper
“When Should You Adjust Standard Errors for Clustering”
(2022-09) from Abadie, Athey, Imbens, and Wooldridge, four fan‐
tastic researchers in the causal inference field. I also recommend
you check some alternative ways to do inference, like the one out‐
lined in the paper “An Exact and Robust Conformal Inference
Method for Counterfactual and Synthetic Controls,” by Victor
Chernozhukov et al.

248 | Chapter 8: Difference-in-Differences



Identification Assumptions
As you probably know by now, causal inference is a constant interaction between
statistical tools and assumptions. In this chapter, I chose to begin with the statistical
tool, showing how DID could leverage unit and time relationships to estimate the
treatment effect. That gave you a concrete example to hold on to. Now, it’s time to dig
a little deeper into what kind of assumptions you were making when using DID,
sometimes even without realizing it.

Parallel Trends
Previously in this book, when working with cross-sectional data, a key identification
assumption was that the treatment was independent of the potential outcomes, con‐
ditioned on observed covariates. DID makes a similar, but weaker assumption:
parallel trends.

If you think about it, the DID estimator is quite intuitive when it comes to leveraging
time and unit correlations. If all you had was units (no time dimension), you would
have to use the control to estimate Y 0  for the treated group. On the other hand, if
you had a time dimension, but no control group (all units were treated at some point
in time), you would have to use past Y 0  from the treated units in a sort of before
and after comparison. Both approaches require pretty strong assumptions. You either
have to assume that the outcome of the control can identify E Y 0 D = 1, Post = 1 ,
which is only plausible if treated and control are comparable (like in a RCT), or if the
outcome of the treated unit is a flat line across time, in which case you could use the
past outcome of the treated units to identify E Y 0 D = 1, Post = 1 . In contrast,
difference-in-differences makes a weaker assumption: that the trajectory of outcomes
across time would be the same, on average, for treatment and control groups, in the
absence of the treatment. It assumes that the trends in Y 0  are parallel:

E Y 0 it = 1 − Y 0 it = 0 D = 1 = E Y 0 it = 1 − Y 0 it = 0 D = 0

This assumption is untestable because it contains a term that is nonobservable:
E Y 0 it = 1 D = 1 . Still, for the sake of understanding it, let’s pretend for a moment
you could observe the Y 0  potential outcome for all time periods. In the following
plots, I’m representing them as dashed lines. Here you can see the potential outcome
Y 0  for four periods, for both treatment and control. Additionally, each plot has four
points representing the observed data for the treated and control groups and the DID
estimated trajectory of the treated under the control, represented as a dotted line. The
difference between this dotted line and the post-treatment outcome for the treated
group is the DID estimate for the ATT.

Identification Assumptions | 249



The true ATT, however, is the difference between the post-treatment outcome for the
treated group, but with respect to the dashed gray line, which represents the unob‐
served Y 0  for the treated group:

In the first plot, the estimated and actual Y 0 D = 1 coincide. In this case, the paral‐
lel trend assumption is satisfied and the DID estimator recovers the true ATT. In the
second plot, the trends converge. The estimated trend is steeper than the actual trend
for Y 0 D = 1. As a result, the DID estimate would be downward biased: the differ‐
ence between E Y 1 D = 1, Post = 1  and the estimated trend is smaller than the
difference between E Y 1 D = 1, Post = 1  and the actual, but unobservable,
E Y 0 D = 1, Post = 1 .

Finally, the last plot shows how the parallel trends assumption is not scale invariant.
This plot simply takes the data from the first plot and applies the log transformation
to the outcome. This transformation takes a trend that was parallel and makes it con‐
vergent. I’m showing this to warn you to be very careful with DID. For instance, if
you have level data, but want to measure the effect as a percent change, converting
the outcome to a percentage can mess up your trends.

See Also

In the paper “When Is Parallel Trends Sensitive to Functional
Form?” Jonathan Roth and Pedro Sant’Anna derive a more strict
version of parallel trends that is invariant to monotonic transfor‐
mation of the outcome and discuss in which situation that assump‐
tion is plausible.

An alternative way to think about the parallel trends assumption is in relation to the
conditional independence assumption (CIA). While the CIA states that the level of
Y 0  is the same, on average, in the treated and control groups, parallel trends states
that the growth of Y 0  is the same between treated and control groups. This can be
expressed in terms of the ΔYs you saw earlier:

250 | Chapter 8: Difference-in-Differences



Δy0, Δy1 ⊥ T

Here lies the power of panel data: even if the treatment is not randomly assigned, so
long as the treated and control groups have the same counterfactual growth, the ATT
can be identified.

Just like with the independence assumption, you can relax the parallel trend assump‐
tion to be conditioned on covariates. That is, given a set of pre-treatment covariates
X, the trend in Y 0  is the same between treated and control group. You’ll see later in
this chapter how to incorporate covariates in DID.

No Anticipation Assumption and SUTVA
If the parallel trend assumption can be seen as a panel data version of the independ‐
ence assumption, the no anticipation assumption is more related to the stable unit of
treatment value assumption (SUTVA). Recall that SUTVA violations happen when
the effect spills over from treatment into the control units (or vice versa)? Well, here
it is the same thing, but across time periods: you don’t want the effect to spill over to
periods when the treatment hasn’t yet taken place.

If you think there is no way this can happen, consider you are trying to estimate the
effect of Black Friday on sales of cell phones. If you try this, you’ll see that many busi‐
nesses anticipate the Black Friday discount, knowing that the period prior to Black
Friday is one where customers are already shopping for products. This will likely
cause you to see a spike in sales before the treatment (Black Friday) even takes place.

The fact that you have to worry about time spillover doesn’t mean you don’t have to
worry about unit spillover. Good old SUTVA is still a big issue in panel data analysis,
especially when the unit is a geographic region. That’s because people are constantly
moving across the geographic borders, which makes the treatment likely to spill out
of the treated units.

Spatial Spillover
Much like with everything in the panel data literature, dealing with spatial spillover is
something the causal inference community is still learning about. A very good paper
on this subject is “Difference-in-Differences Estimation with Spatial Spillovers,” by
Kyle Butts. The paper is not hard to read and the proposed solution is easy to imple‐
ment. The basic idea is to expand the two-way fixed effect formulation of DID with a
dummy, S which is 1 if a control unit is deemed close enough to a treated unit:

Yit = τitWit + η0Si 1 − Wit + η1SiWit + αi + γt + eit

Identification Assumptions | 251



Strict Exogeneity
The strict exogeneity assumption is a pretty technical assumption that is usually
stated in terms of the fixed effect model’s residuals:

Yit = αi + Xitβ + �it

Strict exogeneity states that:

E �it Xit, αi = 0

This assumption is stronger and implies parallel trends. It is also fairly obscure, so I
think it is best if we talk about it in terms of what it implies:

1. No time varying confounders
2. No feedback
3. No carryover effect

You can also make this assumption more palpable by showing it in a DAG:

Now, let’s walk through what it really means.

No Time Varying Confounders
Let me start with some good news. Do you remember how I mentioned that panel
data can utilize time and unit correlations? It’s worth noting that having repeated
observations over time can help you identify the causal effect even when unobserved
confounders are present. This is true as long as those confounders are constant over

252 | Chapter 8: Difference-in-Differences



time or across all units. To understand this better, let’s revisit the marketing example.
Each city has its unique culture, laws, and population, all of which can significantly
influence both the treatment and outcome variables. Some of these variables, such as
culture and laws, are challenging to quantify, making them unobserved confounders
that you need to account for. However, how can you do that when you can’t measure
them?

The trick is to see that, by zooming in on a unit and tracking how it evolves over
time, you are already controlling for anything that is fixed over time. That includes
any time-fixed confounders, even those that are unmeasured. In the marketing exam‐
ple, if downloads increase over time in a particular city, you know it cannot be due to
any change in the city culture (at least not in a short time frame), simply because that
confounder is fixed over time. The bottom line is that even though you can’t control
for time-fixed confounders, since you can’t measure it, you can still block the back‐
door path that goes through it, if you control for the unit itself.

If you are more of a math person, you can also see how the process of demeaning the
data wipes out any time-fixed covariate. Recall that adding unit-fixed effects can be
achieved by adding unit dummies, but also by computing the average of both out‐
come and treatment by unit and subtracting that from the original variables:

Ÿit = Yit − Yi

Ẅit = Wit − Wi

Here, I’m using Wit = DiPostt to denote the treatment, since Di is time fixed. With de-
meaning, any unobserved Ui vanishes. Since Ui is constant across time, you have that
Ui = Ui, which makes Üit = 0 everywhere. In plain terms, unit-fixed effects wipe out
any variable that is constant across time.

I’m focusing on unit-fixed effects, but a similar argument can be used to show how
time-fixed effects can wipe out any variable that is fixed across units, but changes in
time. In our example, those could be the country’s exchange rate or inflation. Since
those are nationwide variables, they are the same for all the cities.

Of course, if the unobserved confounder changes over time and unit, there is not
much you can do here.

No Feedback
You might have noticed that the previous graph has another vital assumption in it.
Specifically, there are no arrows extending from past outcomes, Y it − 1, toward cur‐
rent treatment, Wit. In other words, there is no feedback. This implies that the

Identification Assumptions | 253



treatment cannot be decided based on the outcome trajectory. To illustrate, imagine
the treatment was a vector indexed by time W = w0, w1, . . . , wT . In this scenario,
the entire vector would have to be decided on one go. This is plausible in block
designs like the one you saw before, where the treatment turns on at a particular time
period and continues indefinitely. However, even then the no feedback assumption
could be violated. For instance, suppose that the marketing team decided that they
would do an offline marketing campaign whenever a city reached 1,000 downloads.
This would violate the no feedback assumption.

Sequential Ignorability

If you want to be able to condition on past outcomes, you need to
look into methods that work under sequential ignorability. Sadly,
you can either control for past outcomes or time-fixed confound‐
ers, but not both. For more about this topic, I suggest you check
out the paper “Causal Inference with Time-Series Cross-Sectional
Data: A Reflection,” by Yiqing Xu, or the book Causal Inference by
M.A. Hernán and J.M. Robins.

No Carryover and No Lagged Dependent Variable
Beyond no feedback, you might observe that the graph also assumes no carryover
effect, since there are no arrows from past treatment to current outcomes. Fortu‐
nately, this assumption can be relaxed if you expand the model, including lagged ver‐
sions of the treatment. For example, if you believe that treatment at period t − 1
impacts the outcome at time t, you can use the following model:

Yit = τitWit + θWit − 1 + αi + γt + eit .

Finally, the graph also assumes no lagged dependent variable, meaning that past out‐
come doesn’t directly cause current outcome. Lucky for you, this assumption is not
really necessary; adding arrows from past Ys to future Ys doesn’t hinder
identification.

See Also

Representing panel data in DAG is not something trivial, but there
are two great papers that try to do so. They really helped me under‐
stand what strict exogeneity implied. First, the paper “When
Should We Use Unit Fixed Effects Regression Models for Causal
Inference with Longitudinal Data?” by Imai and Kim. Second, the
paper “Causal Inference with Time-Series Cross-Sectional Data: A
Reflection,” by Yiqing Xu.

254 | Chapter 8: Difference-in-Differences



Effect Dynamics over Time
By now you probably have a pretty decent understanding about canonical DID,
which means you can now try to diverge from it into its more apocryphal flavors. A
slightly more complicated approach is when you want to incorporate effect dynamics
over time. If you look back at the plot that shows outcome evolution, you can see that
the difference between treated and control group doesn’t increase right after the treat‐
ment takes place. Instead, it takes some time for the treatment to reach its full effect.
In other words, the treatment effect is not instantaneous. This is a fairly common
phenomenon not only in marketing, but with any sort of intervention on entire geog‐
raphies. It also means that you might be underestimating the final treatment effect,
because you are including periods where it hasn’t fully matured yet.

One simple way around this problem is to estimate the ATT over time. If you are
really clever, you can achieve this by creating dummies for each post-treatment
period, but my favorite way of getting effects over time involves using a bit of brute
force: iterating over all the time periods and running DID as if only that period was
the post-treatment one.

In order to do that, let’s create a function that takes a data frame and a date and runs
DID as if that date was the post treatment period:

In [19]: def did_date(df, date):
             df_date = (df
                        .query("date==@date | post==0")
                        .query("date <= @date")
                        .assign(post = lambda d: (d["date"]==date).astype(int)))
             
             m = smf.ols(
                 'downloads ~ I(treated*post) + C(city) + C(date)', data=df_date
             ).fit(cov_type='cluster', cov_kwds={'groups': df_date['city']})
             
             att = m.params["I(treated * post)"]
             ci = m.conf_int().loc["I(treated * post)"]
             
             return pd.DataFrame({"att": att, "ci_low": ci[0], "ci_up": ci[1]},
                                 index=[date])
         

First, this function filters only the pre-treatment period and the passed date. Next, it
filters the dates equal to or before the passed date. If the passed date is from the post-
treatment period, this filter is innocuous. If the date is from the pre-treatment period,
it tosses away the dates after it. This allows you to run DID even for the period before
the treatment. Actually, to do that, you need the next line of code, where the function
reassigns the post-treatment period to be the specified date. Now, if you pass a date
from the pre-treatment, the function will pretend that it comes from the post-
treatment period, in what is sort of a placebo test in the time dimension. Finally, the

Effect Dynamics over Time | 255



function estimates a DID model, extracting the ATT and the confidence interval
around it. It then stores everything in a data frame with a single line.

This function works for a single date. To get the effect for all possible dates, you can
iterate over them, getting the DID estimate each time. Just keep in mind that you
need to skip the first date, as you need at least two time periods for DID to run. If you
store all the results in a list, you can call pd.concat on that list to merge all the results
into a single data frame:

In [20]: post_dates = sorted(mkt_data["date"].unique())[1:]

         atts = pd.concat([did_date(mkt_data, date)
                           for date in post_dates])

         atts.head()
         

att ci_low ci_up
2021-05-02 0.325397 -0.491741 1.142534
2021-05-03 0.384921 -0.388389 1.158231
2021-05-04 -0.156085 -1.247491 0.935321
2021-05-05 -0.299603 -0.949935 0.350729
2021-05-06 0.347619 0.013115 0.682123

You can then plot the effect over time alongside its confidence interval. This plot
shows that the effect doesn’t climb after the treatment takes place. It also seems like
the ATT is a bit higher if you discard the early periods, where it hasn’t fully matured
yet. I’m also plotting the true effect τ so you can see how this approach manages to
recover it pretty well:

The pre-treatment part of this plot also deserves your attention. During this period,
all estimated effects are indistinguishable from zero, which indicates that the effect

256 | Chapter 8: Difference-in-Differences



does not occur prior to treatment. This provides strong evidence that the no-
anticipation assumption may be valid in this case.

Diff-in-Diff with Covariates
Another variation of DID you need to learn is how to include pre-treatment covari‐
ates in your model. This is useful in case you suspect that parallel trend doesn’t hold,
but conditional parallel trend does:

E Y 0 it = 1 − Y 0 it = 0 D = 1, X = E Y 0 it = 1 − Y 0 it = 0 D = 0, X

Consider this situation: you have the same marketing data as before, but now, you
have data on multiple regions of the country. If you plot the treatment and control
outcome for each region, you’ll see something interesting:

In [21]: mkt_data_all = (pd.read_csv("./data/short_offline_mkt_all_regions.csv")
                         .astype({"date":"datetime64[ns]"}))
         

The pre-treatment trends seem to be parallel within a region, but not across regions.
As a result, if you simply run the two-way fixed effect specification of DID here, you’ll
get a biased estimate for the ATT:

In [22]: print("True ATT: ", mkt_data_all.query("treated*post==1")["tau"].mean())

         m = smf.ols('downloads ~ treated:post + C(city) + C(date)',
                     data=mkt_data_all).fit()

         print("Estimated ATT:", m.params["treated:post"])
         

Diff-in-Diff with Covariates | 257



Out[22]: True ATT:  1.7208921056102682
         Estimated ATT: 2.068391984256296
         

Somehow, you need to account for the different trends in each region. You might
think that simply adding the region as an extra covariate in the regression will solve
the problem. But think again! Remember how using unit-fixed effects wipes out the
effect of any time-fixed covariate? This is true not only for unobservable confound‐
ers, but also for the region covariate, which is constant across time. The end result is
that naively adding it to the regression is innocuous. You’ll get the same result as
before:

In [23]: m = smf.ols('downloads ~ treated:post + C(city) + C(date) + C(region)',
                     data=mkt_data_all).fit()
         m.params["treated:post"] 
         

Out[23]: 2.071153674125536
         

To properly include pre-treatment covariates in your DID model, you need to recall
that DID works by estimating two important pieces: the treated baseline and the con‐
trol trend. It then projects the control trend into the treated baseline. This means you
have to estimate the control trend for each region separately. The overkill way of
doing this is to simply run a separate difference-in-differences regression for each
region. You could literally loop through the regions or interact the entire DID model
with region dummies:

In [24]: m_saturated = smf.ols('downloads ~ (post*treated)*C(region)',
        data=mkt_data_all).fit()

atts = m_saturated.params[
       m_saturated.params.index.str.contains("post:treated")
       ]atts

Out[24]: post:treated          1.676808
post:treated:C(region)[T.N]   -0.343667
post:treated:C(region)[T.S]   -0.985072
post:treated:C(region)[T.W]    1.369363
dtype: float64

Just keep in mind that the ATT estimates should be interpreted with respect to the
baseline group, which in this case is the East region. So, the effect on the North region
is 1.67–0.34, the effect on the South region is 1.67–0.98, and so on. Next, you can
aggregate the different ATTs using a weighted average, where the number of cities in
a region is the weight:

In [25]: reg_size = (mkt_data_all.groupby("region").size()
                     /len(mkt_data_all["date"].unique()))

         base = atts[0]

258 | Chapter 8: Difference-in-Differences



         np.array([reg_size[0]*base]+
                  [(att+base)*size
                   for att, size in zip(atts[1:], reg_size[1:])]
                 ).sum()/sum(reg_size)
         

Out[25]: 1.6940400451471818
         

Even though I said this is overkill, it is actually a pretty good idea. It is very easy to
implement and hard to get it wrong. Still, it has some problems. For instance, if you
have many covariates or a continuous covariate, this approach will be impractical.
Which is why I think you should know that there is another way. Instead of interact‐
ing the region with both post and treated dummies, you can interact with the post
dummy alone. This model will estimate the trend (pre- and post-outcome levels) for
the treated in each region separately, but it will fit a single intercept shift to the treated
and post period:

In [26]: m = smf.ols('downloads ~ post*(treated + C(region))',
                     data=mkt_data_all).fit()

         m.summary().tables[1]
         

coef std err t P>|t| [0.025 0.975]
Intercept 17.3522 0.101 172.218 0.000 17.155 17.550
C(region)[T.N] 26.2770 0.137 191.739 0.000 26.008 26.546
C(region)[T.S] 33.0815 0.135 245.772 0.000 32.818 33.345
C(region)[T.W] 10.7118 0.135 79.581 0.000 10.448 10.976
post 4.9807 0.134 37.074 0.000 4.717 5.244
post:C(region)[T.N] -3.3458 0.183 -18.310 0.000 -3.704 -2.988
post:C(region)[T.S] -4.9334 0.179 -27.489 0.000 -5.285 -4.582
post:C(region)[T.W] -1.5408 0.179 -8.585 0.000 -1.893 -1.189

treated 0.0503 0.117 0.429 0.668 -0.179 0.280

post:treated 1.6811 0.156 10.758 0.000 1.375 1.987

The parameter associated with post:treated can be interpreted as the ATT. It is not
exactly the same ATT that you got before, but it is pretty close. The difference
appears because—as you should know by now—regression averages the regions ATT
by variance, while before, you averaged them by region size. This means that regres‐
sion will overweight regions where the treatment is more evenly distributed (has
higher variance).

This second approach is much faster to run, but the downside is that it requires care‐
ful thinking on how you go about doing the interactions. For this reason, I

Diff-in-Diff with Covariates | 259



recommend you use it only if you really know what you are doing. Or, before you use
it, try to build some simulated data where you know the true ATT and see if you can
recover it with your model. And remember: there is no shame in just running a DID
model for each region and averaging the results. In fact, it is a particularly clever idea.

Doubly Robust Diff-in-Diff
Another way of incorporating pre-treatment and time invariant covariates to allow
for conditionally parallel trends is by making a doubly robust version of difference-
in-differences (DRDID). To do this, you can take a lot of the ideas from Chapter 5,
when you learned how to craft a doubly robust estimator. However, you’ll need to
make some adjustments. First, instead of having a raw outcome model, since DID
works with Δy, you’ll also need a model for the delta outcome over time. Second,
since you only care about the ATT, you just need to reconstruct the treated popula‐
tion from the control units. All of this will make more sense as I show you the steps
to build DRDID.

Propensity Score Model
The first step in DRDID is a propensity score model e X  that uses the pre-treatment
covariates to estimate the probability that a unit comes from the treated group. This
model doesn’t care about the time dimension, which means you only need one period
worth of data to estimate it:

In [27]: unit_df = (mkt_data_all
                    # keep only the first date
                    .astype({"date": str})
                    .query(f"date=='{mkt_data_all['date'].astype(str).min()}'")
                    .drop(columns=["date"])) # just to avoid confusion

         ps_model = smf.logit("treated~C(region)", data=unit_df).fit(disp=0)
         

Delta Outcome Model
Next, you need the outcome model for Δy, which means that first you need to con‐
struct the delta outcome data. To do that you need to take the difference between the
average outcome at the pre- and post-treatment periods. Once you do that, you’ll
again end up with one row for each unit, since the time dimension has been differen‐
tiated out:

In [28]: delta_y = (
             mkt_data_all.query("post==1").groupby("city")["downloads"].mean()
             - mkt_data_all.query("post==0").groupby("city")["downloads"].mean()
         )
         

260 | Chapter 8: Difference-in-Differences



Now that you have Δy, you can join it back into the unit dataset and fit the outcome
model in it:

In [29]: df_delta_y = (unit_df
                       .set_index("city")
                       .join(delta_y.rename("delta_y")))

         outcome_model = smf.ols("delta_y ~ C(region)", data=df_delta_y).fit()
         

All Together Now
It’s time to join all the pieces. Let’s start by gathering all the data you need into a single
data frame. For the final estimator, you’ll need the actual Δy, the propensity score,
and the delta outcome prediction. For that, you can start from the df_delta_y you
used to build your outcome model and make predictions using both the propensity
score model, e x , and the outcome model, m x . The result is, once more, a unit-
level data frame:

In [30]: df_dr = (df_delta_y
                  .assign(y_hat = lambda d: outcome_model.predict(d))
                  .assign(ps = lambda d: ps_model.predict(d)))

         df_dr.head()
         

region treated tau downloads post delta_y y_hat ps

city
1 W 0 0.0 27.0 0 3.087302 3.736539 0.176471
2 N 0 0.0 40.0 0 1.436508 1.992570 0.212766
3 W 0 0.0 30.0 0 2.761905 3.736539 0.176471
4 W 0 0.0 26.0 0 3.396825 3.736539 0.176471
5 S 0 0.0 51.0 0 -0.476190 0.343915 0.176471

With that, let’s think about what a doubly robust DID would look like. As with all
DID, the ATT estimate is the difference between the trend, had the units been treated,
from the trend they would have under the control. Since those are counterfactual
quantities, I’ll represent them with Δy1 and Δy0, respectively. So, to summarize, the
ATT would be given by:

τ DRDID = Δy1
DR − Δy0

DR

It’s not much, I’ll admit, but it’s a nice start. From there, you need to think how to
estimate the ΔyDs in a doubly robust manner.

Doubly Robust Diff-in-Diff | 261



Let’s focus on Δy1. To estimate the treated counterfactual you would weight y − m x
by the inverse of the propensity score, which would reconstruct y1 for the entire pop‐
ulation (see Chapter 5). Here, since you only care about the ATT, you don’t need that;
you already got the treatment population. Hence, the first term becomes:

Δy1
DR = 1/Ntr ∑

i ∈ tr
Δy − m X

For the other term, you would use weights 1/ 1 − e x  to reconstruct the general
population under the control. But again, since you care about the ATT, you need to
reconstruct the treatment population under the control. To do that, you can simply
multiply the weights by the chance of being a treated unit, which, conveniently, is just
the propensity score:

wco = e X 1
1 − e X

Having defined the weight, you can use it to obtain the estimate for Δy0:

Δy0
DR = ∑

i ∈ co
wco Δy − m X /∑wco

That is pretty much it. As (almost) always, it looks a lot simpler in code than in math:

In [31]: tr = df_dr.query("treated==1")
         co = df_dr.query("treated==0")

         dy1_treat = (tr["delta_y"] - tr["y_hat"]).mean()

         w_cont = co["ps"]/(1-co["ps"])
         dy0_treat = np.average(co["delta_y"] - co["y_hat"], weights=w_cont)

         print("ATT:", dy1_treat - dy0_treat)
         

Out[31]: ATT: 1.6773180394442853
         

It is remarkably close to the true ATT and to the ATT you got earlier when you added
covariates to DID. The advantage here is that you get two shots at getting the estima‐
tion right. The DRDID will work if either (but not necessarily both) the propensity
score model or the outcome model are correct. I won’t do it here to avoid making this
chapter too long, but I encourage you to try replacing either the ps columns or the
y_hat column by a randomly generated column and recompute the preceding esti‐
mate. You’ll see that the end result will still be close to the actual one.

262 | Chapter 8: Difference-in-Differences



See Also

This method was proposed in the paper “Doubly Robust
Difference-in-Differences Estimators,” by Sant’Anna and Zhao. The
paper has a lot more content, including how to do inference on this
estimator and how to achieve double robustness when you have
repeated cross-sectional data (when units can change at each time
period) as opposed to a panel data (when all units are the same).

Just like when you did doubly robust estimation with cross-sectional data, to get con‐
fidence intervals for DRDID, you would need to use the block bootstrap function you
implemented earlier, wrapping the entire procedure—outcome model, propensity
score model, and putting it all together—in a single estimation function.

Staggered Adoption
Up until this point, the type of data you’ve been looking at followed a block design,
with only two periods: a pre- and post-treatment. Even though each period had mul‐
tiple dates, at the end of the day, all that mattered was that you had a group of units
that were all treated at the same point in time and a group of units that were never
treated. This block design is the poster child to difference-in-differences analysis
since it keeps things extremely simple, allowing you to estimate the baselines and
trends nonparametrically—that is, by simply computing a bunch of sample averages
and comparing them. But it can also be fairly limited. What if the treatment gets
rolled out to the units at different points in time?

A much more common situation with panel data is the staggered adoption design,
where you have multiple groups of units, which I’ll call G, and each group gets treated
at a different point in time (or never). Since the timing of the treatment is what
defines a group, it’s common to refer to them as a cohort: the group G that gets the
treatment at time t is the cohort Gt.

Bringing this to the marketing data you’ve been looking at, you had two cohorts: a
never treated cohort, or G∞, and a group that got the treatment at 2021-05-15, or
G15/05. But that’s only because I’ve hidden what happens after 2021-06-01. Now that
you’re ready for a more complex situation, look at the mkt_data_cohorts data frame,
which also contains data on cities from all the regions, but now up until 2021-07-31:

In [32]: mkt_data_cohorts = (pd.read_csv("./data/offline_mkt_staggered.csv")
                             .astype({
                                 "date":"datetime64[ns]",
                                 "cohort":"datetime64[ns]"}))

         mkt_data_cohorts.head()
         

Staggered Adoption | 263



date city region cohort treated tau downloads post
0 2021-05-01 1 W 2021-06-20 1 0.0 27.0 0
1 2021-05-02 1 W 2021-06-20 1 0.0 28.0 0
2 2021-05-03 1 W 2021-06-20 1 0.0 28.0 0
3 2021-05-04 1 W 2021-06-20 1 0.0 26.0 0
4 2021-05-05 1 W 2021-06-20 1 0.0 28.0 0

It’s hard to see all the data by just looking at the top rows, but Figure 8-2 shows the
treatment status across time. There you can see what a staggered adoption design
looks like.

Figure 8-2. In a staggered adoption design, the treatment gets gradually rolled out to
more and more units

Previously, you had data up until 2021-06-01, so it looked like you had a small treat‐
ment group and a huge never treated group. But once you expand your data, you can
see that the offline marketing campaign got rolled out to other cities later on. Now,
you have four different cohorts, three of which are treated and a never treated group
(which has cohort 2100-01-01 in this dataset).

264 | Chapter 8: Difference-in-Differences



Just like with the block design, with staggered adoption you’ll
assume that once the treatment turns on, it stays that way forever.
This is important to keep things tractable. In panel data analysis,
the potential outcomes are defined by vectors representing the tra‐
jectory of outcome at each time period, D = Yd1, Yd2, . . . , YdT ,
and the treatment effect is defined by contrasting two of those tra‐
jectories. This means there are about 2T ways to define the treat‐
ment effect if you allow the treatment to turn on and off.

To take things one bite at a time, let’s forget about covariates for now, focusing only
on the West region. I’ll show how to handle covariates later. For now, just focus on
the staggered adoption component of the problem:

In [33]: mkt_data_cohorts_w = mkt_data_cohorts.query("region=='W'")
         mkt_data_cohorts_w.head()
         

date city region cohort treated tau downloads post
0 2021-05-01 1 W 2021-06-20 1 0.0 27.0 0
1 2021-05-02 1 W 2021-06-20 1 0.0 28.0 0
2 2021-05-03 1 W 2021-06-20 1 0.0 28.0 0
3 2021-05-04 1 W 2021-06-20 1 0.0 26.0 0
4 2021-05-05 1 W 2021-06-20 1 0.0 28.0 0

If you plot the average downloads over time for each cohort, you can see a clear pic‐
ture. The outcome of G = 05/15 shows an increase right after the date 2021-15-05.
The same is true for the cohorts G = 06/04 and G = 06/20. Meanwhile, the group that
was never treated follows what appears to be a beautifully parallel trend to the treated
groups prior to the treatment. Another thing to pay attention to is that the effect takes
some time to mature, something you’ve seen before. This becomes even clearer if you
plot the outcome after aligning the cohorts, which you can see in the second image:

Staggered Adoption | 265



You might argue that the preceding data is extraordinarily well behaved, which makes
it obvious it was simulated. You might even be tempted to conclude that diff-in-diff
will have no problem recovering the true ATT. Well, let’s try it out:

In [34]: twfe_model = smf.ols(
             "downloads ~ treated:post + C(date) + C(city)",
             data=mkt_data_cohorts_w
         ).fit()

         true_tau = mkt_data_cohorts_w.query("post==1&treated==1")["tau"].mean()

         print("True Effect: ", true_tau)
         print("Estimated ATT:", twfe_model.params["treated:post"])
         

Out[34]: True Effect:  2.2625252108176266
         Estimated ATT: 1.7599504780633743
         

As you can see, something is off. The effects seems downward biased! What is going
on here?

This issue has been at the center of the very recent literature on panel data. Unfortu‐
nately, this chapter would be too long if I tried to give you a full explanation. What I
can do is give you a glimpse and, if you are interested, point you to further resources.
The root of this problem lies in the fact that, when you have staggered adoption,
beyond the traditional DID assumptions you saw earlier, you also need to assume that

266 | Chapter 8: Difference-in-Differences



effects are homogeneous across time. As discussed earlier, this is not the case with this
data. The effect takes some time to mature, meaning it is lower just after the treat‐
ment takes place and gradually climbs up afterward. This effect change over time
causes bias in your ATT estimate.

Let’s examine two groups of cities to understand why. The first group, which I’ll call
the early treated cohort, received treatment on 06/04. The second group, which I’ll
refer to as the late treated cohort, received treatment on 06/20. The two-way fixed
effect model you just estimated actually uses a series of 2 × 2 diff-in-diff runs and
combines them into a final estimate. In one of these runs, the model estimates the
effect of treatment on the early treated cohort using the late treated group as a con‐
trol. This is valid since the late treated cohort can be considered a not-yet-treated
group. However, the model is also estimating the effect on the late treated cohort by
using the early treated cohort as a control. This approach is acceptable, but only if the
treatment effect is not variable across time. You can see why in the following image.
The picture shows both comparisons as well as the estimated counterfactual, Y0. It’s
worth noting that the role played by each cohort reverses from one plot to the next:

As you can see, the early versus late comparison seems fine. The issue is on the late
versus early. The control group (cohort 06/04) is already treated, even though it
serves as a control here. Moreover, since the effect is heterogeneous, gradually climb‐
ing up, the trend in the control (early treated) is steeper than it would be, had the
cohort not yet been treated. This extra steepness from the gradually increasing effect

Staggered Adoption | 267



causes an overestimate in the control trend, which in turns translates to a downward-
biased ATT estimate. This is why using the already treated as a control will bias your
results if the treatment effect is heterogeneous across time.

See Also

Like I said, there is a bunch of recent literature on this limitation of
the two-way fixed effect model. If you want to learn more, I
strongly recommend the paper “Difference-in-Differences with
Variation in Treatment Timing,” by Andrew Goodman-Bacon. His
diagnosis of the problem is very neat and intuitive. Not to mention
it comes with nice pictures to help with the general understanding
of the paper.

Now that you know the problem, it’s time to look at the solution. Since the issue lies
on effect heterogeneity, the remedy will be to use a more flexible model, one that fully
takes into account those heterogeneities.

PRACTICAL EXAMPLE

Higher Education and Growth in Developing Countries
In a more recent paper, “Higher Education Expansion, Labor Market, and Firm Pro‐
ductivity in Vietnam,” Khoa Vu and Tu-Anh Vu-Thanh looked at the rapid increase at
the number of universities in Vietnam to figure out the impact of higher education on
wage. They took advantage that the higher education expansion was different for each
province, which allowed them to identify the effect of universities using difference-in-
differences.

We collect a dataset on the timing and location of university openings and estimate
that individuals’ exposure to a university opening increases their chances of complet‐
ing college by over 30%. It also raises their wage by 3.9% and household expenditure
by 14%.

Heterogeneous Effect over Time
There is good news and bad news. First, the good news: you’ve identified the prob‐
lem. Namely, you know that TWFE is biased when applied to staggered adoption data
that has time-heterogeneous effects. In a more technical notation, your data generat‐
ing process has different effect parameters:

Yit = τitWit + αi + γt + eit,

but you were assuming that the effect was constant:

268 | Chapter 8: Difference-in-Differences



Yit = τWit + αi + γt + eit .

If that is the problem, an easy fix would be to simply allow for a different effect for
each time and unit. You could, in theory, achieve something like that with the follow‐
ing formula:

downloads ~ treated:post:C(date):C(city) + C(date) + C(city)

That’s it right? Problem solved? Well, not quite. Now for the bad news: this model
would have more parameters than there are data points. Since you are interacting
date and unit, you would have one treatment effect parameter for each unit for each
time period. But this is exactly the number of samples you have! OLS wouldn’t even
run here.

OK, so you need to reduce the number of treatment effect parameters of the model.
To achieve that, can you think of a way of somehow grouping units? If you scratch
your head a little, you can see a very natural way to group units: by cohort! You know
that the effect in an entire cohort follows the same pattern over time. So, a natural
improvement on that impractical model is to allow the effect to change by cohort,
instead of by units:

Yit = τgtWit + αi + γt + eit .

That model has a more reasonable number of treatment effect parameters, since the
number of cohorts is usually much smaller than the number of units. Now, you can
finally run the model:

In [35]: formula = "downloads ~ treated:post:C(cohort):C(date) + C(city)+C(date)"

         twfe_model = smf.ols(formula, data=mkt_data_cohorts_w).fit()
         

This will give you multiple ATT estimates: one for each cohort and date. So, to see if
you got it right, you can compute the estimated individual treatment effect implied by
your model and average out the result. To do that, just compare the actual outcome at
the post-treatment period from the treated units with what your models predict for
y0:

In [36]: df_pred = (
             mkt_data_cohorts_w
             .query("post==1 & treated==1")
             .assign(y_hat_0=lambda d: twfe_model.predict(d.assign(treated=0)))
             .assign(effect_hat=lambda d: d["downloads"] - d["y_hat_0"])
         )

         print("Number of param.:", len(twfe_model.params))
         print("True Effect: ", df_pred["tau"].mean())

Staggered Adoption | 269



         print("Pred. Effect: ", df_pred["effect_hat"].mean())
         

Out[36]: Number of param.: 510
         True Effect:  2.2625252108176266
         Pred. Effect:  2.259766144685074
         

Finally! This gives you a model with a bunch of parameters (510!), but it does manage
to recover the true ATT. You can even extract those ATTs and plot them:

The nice thing about this plot is that it’s in accordance with your intuition of how the
effect should behave: it gradually climbs up and it stays constant after a while. Also, it
shows you that the effect is zero for all the pre-treatment periods and, consequently,
for the never treated cohort. This might give you some idea on how to reduce the
number of parameters from this model. For instance, you could only consider effects
from time periods that are greater than the cohort:

Yit = τg, t ≥ gWit + αi + γt + eit .

This would involve a nontrivial amount of feature engineering, though, as you would
have to group the dates prior to the treatment, but it’s good to know it is possible.

See Also

This solution to the treatment effect heterogeneity problem was
inspired by the papers “Estimating Dynamic Treatment Effects in
Event Studies with Heterogeneous Treatment Effects,” by Sun and
Abraham, and the paper “Two-Way Fixed Effects, the Two-Way
Mundlak Regression, and Difference-in-Differences Estimators,” by
Jeffrey Wooldridge.

270 | Chapter 8: Difference-in-Differences



Just like when you approached the problem of including covariates in the diff-in-diff
model, there are two types of solutions for this TWFE bias. The one you just saw
involves cleverly interacting dummies when running the two-way fixed effect model.
Another approach involves breaking the problem into multiple 2 × 2 diff-in-diffs,
solving each one individually and combining the results. One way to do this is by
estimating one diff-in-diff model for each cohort, using the never treated group as a
control:

In [37]: cohorts = sorted(mkt_data_cohorts_w["cohort"].unique())

         treated_G = cohorts[:-1]
         nvr_treated = cohorts[-1]

         def did_g_vs_nvr_treated(df: pd.DataFrame,
                                  cohort: str,
                                  nvr_treated: str,
                                  cohort_col: str = "cohort",
                                  date_col: str = "date",
                                  y_col: str = "downloads"):
             did_g = (
                 df
                 .loc[lambda d:(d[cohort_col] == cohort)|
                               (d[cohort_col] == nvr_treated)]
                 .assign(treated = lambda d: (d[cohort_col] == cohort)*1)
                 .assign(post = lambda d:(pd.to_datetime(d[date_col])>=cohort)*1)
             )
             
             att_g = smf.ols(f"{y_col} ~ treated*post",
                             data=did_g).fit().params["treated:post"]
             size = len(did_g.query("treated==1 & post==1"))
             return {"att_g": att_g, "size": size}

         
         atts = pd.DataFrame(
             [did_g_vs_nvr_treated(mkt_data_cohorts_w, cohort, nvr_treated)
              for cohort in treated_G]
         )
             
         atts
         

att_g size
0 3.455535 702
1 1.659068 1044
2 1.573687 420

Staggered Adoption | 271



Then, you can combine the result with a weighted average, where the weights are the
sample size (T * N) of each cohort. The resulting estimate is remarkably similar to
what you estimated before:

In [38]: (atts["att_g"]*atts["size"]).sum()/atts["size"].sum()
         

Out[38]: 2.2247467740558697
         

Alternatively, instead of using the never treated as the control, you could use the not
yet treated, which increases the sample size of the control. This is a bit more cumber‐
some, as you would have to run diff-in-diff multiple times for the same cohort.

See Also

This second solution to the effect heterogeneity problem was
inspired by the paper “Difference-in-Differences with Multiple
Time Periods,” by Pedro H. C. Sant’Anna and Brantly Callaway. In
the paper, they also cover how to use the not-yet treated as a con‐
trol group and how to use doubly robust difference-in-differences.

Covariates
Having gotten the TWFE bias issue out the way, all there is left to do is see how to use
the entire dataset, all time periods, with staggered adoption design, and all regions,
which will require you to include covariates in your model.

Fortunately, there is nothing particularly new here. All you have to do is remember
how you’ve added covariates to the diff-in-diff model earlier. In that case, you’ve
interacted the covariates with the post treatment dummy. Here, analogous to the
post-treatment dummy is the date column, which marks the passage of time. Hence,
all you have to do is interact the covariates with that column:

In [39]: formula = """
         downloads ~ treated:post:C(cohort):C(date)
         + C(date):C(region) + C(city) + C(date)"""

         twfe_model = smf.ols(formula, data=mkt_data_cohorts).fit()
         

Once more, since this model will give you a bunch of parameter estimates, you can
get the ATT by computing the individual effects and averaging them out:

In [40]: df_pred = (
             mkt_data_cohorts
             .query("post==1 & treated==1")
             .assign(y_hat_0=lambda d: twfe_model.predict(d.assign(treated=0)))
             .assign(effect_hat=lambda d: d["downloads"] - d["y_hat_0"])
         )

272 | Chapter 8: Difference-in-Differences



         print("Number of param.:", len(twfe_model.params))
         print("True Effect: ",  df_pred["tau"].mean())
         print("Pred. Effect: ", df_pred["effect_hat"].mean())
         

Out[40]: Number of param.: 935
         True Effect:  2.078397729895905
         Pred. Effect:  2.0426262863584568
         

If you choose to break down staggered adoption into multiple 2 × 2 blocks, you could
also add covariates in each DID model individually, pretty much like you did earlier.

Key Ideas
Panel data methods is an exciting and rapidly evolving field in causal inference. A lot
of the promises come from the fact that having an extra time dimension allows you to
estimate counterfactuals for the treated not only from the control units, but also from
the treated units’ past.

In this chapter, you’ve explored multiple ways of applying difference-in-differences.
DID relaxes the traditional unconfoundedness assumption, Yd ⊥ T X to the condi‐
tional parallel assumption:

ΔYd ⊥ T X

This gives you some hope if you have unobservable confounders. With panel data,
you can still identify the ATT, as long as those confounders are constant across time
(for the same unit) or across units (for the same time period).

Despite its great powers, DID doesn’t come without its complexities. If you move
beyond the canonical DID formulation, you need to be very careful with your model‐
ing. While 2 × 2 DID has the flexibility of a nonparametric model, the same cannot
be said about the more general staggered adoption setting, which requires you to
make additional functional form assumptions.

This chapter teaches you how to deal with many extensions beyond the simple 2 × 2
case, adding covariates, estimating the effect evolution over time, and allowing differ‐
ent treatment timing. However, keep in mind that all of this is very new, and I
wouldn’t be surprised if the field moves beyond what’s in here in the near future. Still,
this chapter should give you a pretty solid foundation to catch up quickly, should the
necessity arise.

Key Ideas | 273





CHAPTER 9

Synthetic Control

In the previous chapter you learned about the advantages of panel data for causal
identification. Namely, the fact that you could not only compare units with each
other, but also with their former selves, allows you to estimate counterfactuals Y0
with more plausible assumptions. You also learned about difference-in-differences
(DID)—and many variations of it—one of the many causal inference tools that lever‐
age panel data. By relying on similar (parallel) growth trajectories between treated
and control, DID was able to identify the treatment effect even if the levels of Y0
between treated and control were different. In this chapter, you’ll learn another popu‐
lar technique for panel datasets: synthetic control (SC).

While DID works great if you have a relatively large number of units N compared to
time periods T, it falls short when the reverse is true. In contrast, synthetic control
was designed to work with very few, even one, treatment unit. The idea behind it is
quite simple: combine the control units in order to craft a synthetic control that
would approximate the behavior of the treated units in the absence of treatment. By
doing that, it avoids making a parallel trend assumption as the synthetic control,
when well crafted, won’t be just parallel, but perfectly overlapping with the counter‐
factual E Y0 D = 1 .

At the end of this chapter, you’ll also learn how to combine both DID and SC. This
combined estimator is not only very powerful, but, most importantly, it will give you
a whole new perspective on difference-in-differences and synthetic control in partic‐
ular, and panel data methods in general.

Online Marketing Dataset
As a use case for synthetic control, you’ll be working with an online marketing data‐
set. Online marketing allows for better tracking than offline marketing, but it doesn’t

275



mean it comes without its challenges for causal inference. For instance, it is true that
online marketing allows better attribution: you know if a customer reached your
product through some paid marketing link. But that doesn’t mean you know what
would have happened to that customer if they didn’t see your online ad. Perhaps cus‐
tomers only came because they saw the ad, in which case it is bringing in extra cus‐
tomers. But perhaps customers would have come either way and the fact that they did
through the paid link was just because that link was at the top of the page.

Since attribution is not the same as incrementality, and since you can’t randomize
who gets to see your ads, treating entire geographies and doing some sort of panel
data analysis, much like in the previous chapter, is also a good idea for online market‐
ing. Hence, the data you have here is not much different from the data you saw in the
previous chapter. Once again, you have the city as the unit and date as the time
dimension, a treated column, which marks if the city is eventually treated, and a post-
treatment column, which marks the post-intervention period. You also have some
auxiliary columns, like the population in that city (recorded in 2013, so fixed in time)
and the state:

In [1]: import pandas as pd
        import numpy as np

        df = (pd.read_csv("./data/online_mkt.csv")
              .astype({"date":"datetime64[ns]"}))

        df.head()
        

app_download population city state date post treated
0 3066.0 12396372 sao_paulo sao_paulo 2022-03-01 0 1
1 2701.0 12396372 sao_paulo sao_paulo 2022-03-02 0 1
2 1927.0 12396372 sao_paulo sao_paulo 2022-03-03 0 1
3 1451.0 12396372 sao_paulo sao_paulo 2022-03-04 0 1
4 1248.0 12396372 sao_paulo sao_paulo 2022-03-05 0 1

Here, the outcome variable is daily app downloads and the treatment is having the
marketing campaign turned on for that city. The treatment is implemented on the
treated cities at the same time, which means you have a simple block design. The
catch here is that you have a much smaller number of treated units—only three cities:

In [2]: treated = list(df.query("treated==1")["city"].unique())
        treated
        

Out[2]: ['sao_paulo', 'porto_alegre', 'joao_pessoa']
        

276 | Chapter 9: Synthetic Control



If you paid attention to the population column in the data frame, you might have
noticed that one of those cities, Sao Paulo, has a massive population of over 12MM.
In fact, it is one of the biggest cities in the world! This also means that the number of
app downloads in Sao Paulo will be a lot larger than in other cities, which poses some
challenges. It is very hard to combine other cities to make a synthetic control that
matches Sao Paulo’s downloads. This issue is exacerbated here, but, in general, entire
markets will have different sizes, making comparison across them difficult. Hence, a
common approach is to normalize the outcome by the market size. This means divid‐
ing the number of app downloads by the city’s population to create a normalized ver‐
sion of the outcome. This new outcome, app_download_pct, represents the number
of daily downloads as a percentage of the market size:

In [3]: df_norm = df.assign(
            app_download_pct = 100*df["app_download"]/df["population"]
        )

        df_norm.head()
        

app_download population city state date post treated app_download_pct
0 3066.0 12396372 sao_paulo sao_paulo 2022-03-01 0 1 0.024733
1 2701.0 12396372 sao_paulo sao_paulo 2022-03-02 0 1 0.021789
2 1927.0 12396372 sao_paulo sao_paulo 2022-03-03 0 1 0.015545
3 1451.0 12396372 sao_paulo sao_paulo 2022-03-04 0 1 0.011705
4 1248.0 12396372 sao_paulo sao_paulo 2022-03-05 0 1 0.010067

Moving forward with your exploratory analysis, you’ll find out that an online market‐
ing campaign was launched for those cities in 2022-05-01. The campaign also stayed
on for the remainder of the analyzed time window:

In [4]: tr_period = df_norm.query("post==1")["date"].min()
        tr_period
        

Out[4]: Timestamp('2022-05-01 00:00:00')
        

This is a good time to review some of the panel notation you’ll be using. Recall that,
to avoid confusion, I’ll use D to denote the treatment variable and t to denote time. T
will be the number of periods, with Tpre being the number of periods before the inter‐
vention and Tpost, the number of periods after the intervention. Hence, the treatment
takes place when D = 1 and t > Tpre. To declutter, I’ll sometimes use a post dummy to
indicate t > Tpre. The combination of both treated and post-treatment will be repre‐
sented by Wit = Di * Postt.

Online Marketing Dataset | 277



For you to get a sense of what this data looks like, the following plot shows the evolu‐
tion of the average outcome of the three treated cities, and a sample of control cities,
in the background, in light gray. The beginning of the post-treatment period is
marked by a horizontal dashed line:

Looking at this plot, you can kind of see an increase in the treated units’ outcome
after the intervention, but it is not 100% clear. To be more precise, you would have to
estimate the counterfactual and compare it to the observed outcome to get an esti‐
mate for average treatment effect on the treated (ATT):

ATT = E Y D = 1, Post = 1 − E Y0 D = 1, Post = 1

Here is where synthetic control comes in. It is an incredibly clever way to use (but not
condition on) past outcomes in order to estimate E Y0 D = 1, Post = 1 .

Matrix Representation
In the previous chapter, I showed you an image that represents panel data as a matrix,
where one dimension is the time period and the other dimension denotes the units.
Synthetic control makes explicit use of that matrix, so it is worth reviewing it. Let’s say
that the rows of the matrix are the time periods and the columns of the matrix are the
cities (units). You can represent the treatment assignment with four blocks:

W =
0pre, co 0pre, tr

0post, co 1post, tr

278 | Chapter 9: Synthetic Control



The first block in your matrix (top left) corresponds to the control units prior to the
treatment period; the second one (top right) corresponds to the treated units prior to
the treatment period; the third block (bottom left) contains the control units after the
treatment period; and the fourth block (bottom right) is the treated unit after the
treatment period. The treatment indicator wti is zero everywhere except for the block
with the treated units after the treatment period (bottom right).

This assignment matrix will lead to the following observed potential outcome matrix:

Y =
Y 0 pre, co Y 0 pre, tr

Y 0 post, co Y 1 post, tr

Again, notice how the post-treatment period is on the bottom and the treated units
are to the right. Your goal is to estimate the ATT = Y 1 post, tr − Y 0 post, tr. For that,
you need to somehow estimate the missing potential outcome Y 0 post, tr, which is not
observed. In words, you need to know what would have happened to the treated units
at the post-treatment period had they not been treated. To achieve that, you would
ideally leverage all the other three blocks at your disposal, Y 0 pre, co, Y 0 pre, tr, and
Y 0 post, co. Before I show you how synthetic control does that, let’s create a function
to represent the data in this matrix format.

The following code uses the .pivot() method to reshape the data frame so that you
end up with one row per time period (date) and one column per city, while the out‐
come becomes the values of the matrix. Then, it partitions the matrix into treated and
control units. It further partitions them into a pre- and post-intervention period:

In [5]: def reshape_sc_data(df: pd.DataFrame,
                            geo_col: str, 
                            time_col: str,
                            y_col: str,
                            tr_geos: str,
                            tr_start: str):
            
            df_pivot = df.pivot(time_col, geo_col, y_col)
            
            y_co = df_pivot.drop(columns=tr_geos)
            y_tr = df_pivot[tr_geos]
            
            y_pre_co = y_co[df_pivot.index < tr_start]
            y_pre_tr = y_tr[df_pivot.index < tr_start]
            
            y_post_co = y_co[df_pivot.index >= tr_start]
            y_post_tr = y_tr[df_pivot.index >= tr_start]
            
            return y_pre_co, y_pre_tr, y_post_co, y_post_tr
        

Matrix Representation | 279



You’ll use this four-block matrix representation throughout the chapter. If you ever
forget what you are working with, just come back to this function. To see how it
works, passing df_norm to reshape_sc_data returns you the Ys in matrix format.
Here are the first five rows of y_pre_tr:

In [6]: y_pre_co, y_pre_tr, y_post_co, y_post_tr = reshape_sc_data(
            df_norm,
            geo_col="city",
            time_col="date",
            y_col="app_download_pct",
            tr_geos=treated,
            tr_start=str(tr_period)
        )

        y_pre_tr.head()
        

city sao_paulo porto_alegre joao_pessoa

date
2022-03-01 0.024733 0.004288 0.022039
2022-03-02 0.021789 0.008107 0.020344
2022-03-03 0.015545 0.004891 0.012352
2022-03-04 0.011705 0.002948 0.018285
2022-03-05 0.010067 0.006767 0.000000

Synthetic Control as Horizontal Regression
The main idea behind synthetic control is quite simple. Using the pre-treatment
period, you’ll find a way to combine the control units to approximate the average out‐
come of the treated units. In mathematical terms, this can be framed as an optimiza‐
tion problem, where you’ll look for unit weights ωi (not to be confused with
wit = Postt * Di) such that, when you multiply each weight by its unit’s outcome, ωiyi,
you get something resembling the treated unit’s outcome:

ωsc = argmin
ω

ypre, tr − Y pre, coωco
2

Then, to estimate E Y 0 D = 1, Post = 1  and get the ATT estimate, you can use the
synthetic control Y post, coωco.

If this seems a bit cryptic, perhaps a good alternative explanation is one that com‐
pares synthetic control to a more familiar tool: linear regression. Recall that regres‐
sion could also be represented by an optimization problem where the goal was to
minimize the (squared) difference between the outcome and a linear combination of
the covariates X:

280 | Chapter 9: Synthetic Control



β* = argmin
β

Yi − Xi′β
2

Outcome Modeling

Here, you can draw a parallel between synthetic control and poten‐
tial outcome modeling, which you saw in Chapter 5, when reading
about Doubly Robust Estimation. There, you also had to build a
regression model that was estimated in the control group. Then,
you used that model to impute the missing potential outcome, Y0,
for those that where treated. The idea is pretty much the same here.

As you can see, both objectives are identical! This means that synthetic control is
nothing more than a regression that uses the outcome of the control as features to try to
predict the average outcome of the treated units. The trick is that it does this by using
only the pre-intervention period so that the regression estimates E Y0 D = 1 .

In fact, to prove my point, let’s use OLS to build a synthetic control right now. All you
have to do is to use y_pre_co as if it was the covariate matrix X and the column aver‐
age of y_pre_tr as the outcome y. Once you fit this model, the weights can be extrac‐
ted with .coef_:

In [7]: from sklearn.linear_model import LinearRegression

        model = LinearRegression(fit_intercept=False)
        model.fit(y_pre_co, y_pre_tr.mean(axis=1))

        # extract the weights
        weights_lr = model.coef_
        weights_lr.round(3)
        

Out[7]: array([-0.65 , -0.058, -0.239,  0.971,  0.03 , -0.204,  0.007,  0.095,
                0.102,  0.106,  0.074,  0.079,  0.032, -0.5  , -0.041, -0.154,
               -0.014,  0.132,  0.115,  0.094,  0.151, -0.058, -0.353,  0.049,
               -0.476, -0.11 ,  0.158, -0.002,  0.036, -0.129, -0.066,  0.024,
               -0.047,  0.089, -0.057,  0.429,  0.23 , -0.086,  0.098,  0.351,
               -0.128,  0.128, -0.205,  0.088,  0.147,  0.555,  0.229])
        

As you can see, you have one weight for each control city. Usually, regression is used
when you have a bunch of units (large N), which allows you to use the units as the
rows and the covariates as the columns. But synthetic control is designed to work
when you have relatively few units, but a larger time horizon Tpre. In order to do that,
SC quite literally flips the data on its head, using the units as if they were covariates.
This is why synthetic control is also called horizontal regression (see Figure 9-1).

Synthetic Control as Horizontal Regression | 281



Figure 9-1. In traditional regression, units are the rows of the regression table; in hori‐
zontal regression, the rows are time periods and the units are the columns

Once you’ve estimated your regression parameters (or weights), you can use them to
predict what E Y0 D = 1  would look like, not only on the pre-intervention period,
but on the entire time horizon:

In [8]: # same as y0_tr_hat = model.predict(y_post_co)
        y0_tr_hat = y_post_co.dot(weights_lr)
        

Here, y0_tr_hat can be seen as a synthetic control: a combination of control units
that come together to approximate the behavior of the treated units’ average, had they
not been treated.

Average of Synthetic Controls

Alternatively, instead of finding one synthetic control to replicate
the average outcome of the treated units, you could also fit one
synthetic control for each treatment unit individually and then
average the synthetic controls:

model = LinearRegression(fit_intercept=False)
model.fit(y_pre_co, y_pre_tr)
y0_tr_hat = model.predict(y_co).mean(axis=1)

If you plot this synthetic control alongside the observed outcome, you’ll get this:

282 | Chapter 9: Synthetic Control



Notice how the predicted value (the synthetic control) is below the actual outcome of
the treated units. It means that the observed outcome was higher than you’ve estima‐
ted it to be, had the treatment not taken place. This indicates a positive marketing
effect from the online marketing campaign. You can compute that ATT estimate by
contrasting the observed outcome with the synthetic control:

In [9]: att = y_post_tr.mean(axis=1) - y0_tr_hat
        

The plot presents a couple of intriguing aspects. Firstly, it suggests that the effect takes
some time to reach its peak before gradually declining. The gradual increase is fre‐
quently observed in marketing since it usually requires time for individuals to take
action after seeing an advertisement. Additionally, the effect wearing off can often be
attributed to a novelty effect that gradually fades over time.

The second interesting thing is the size of the ATT in the pre-intervention period. In
that time frame, the ATT can be interpreted simply as the residual (in sample error)

Synthetic Control as Horizontal Regression | 283



from your OLS model. You might think that it being close to zero is a good thing;
after all, you don’t want to see an effect prior to the treatment (anticipation). But
there is more to it. The fact that the pre-intervention error is incredibly low can also
mean that the OLS model is probably overfitting. As a result, the out-of-sample pre‐
diction, which should estimate E Y0 D = 1, Post = 1 , might be off.

This is why simple regression is not commonly used as a method to build synthetic
controls. Because of the relatively large number of columns (control cities), it tends to
overfit, not generalizing to the post-intervention period. For this reason, the original
synthetic control method is not a simple regression, but one that imposes some rea‐
sonable and intuitive constraints.

Canonical Synthetic Control
The canonical synthetic control formulation imposes two constraints on the regres‐
sion model:

1. That the weights are all positive
2. That the weights add up to one

Mathematically, the optimization objective becomes:

ωsc = argmin
ω

�pre, tr −�pre, coωco
2

s.t ∑ωi = 1 and ωi > 0 ∀ i

The idea behind the constraints is to force the synthetic control to be a convex com‐
bination of the treated units, avoiding extrapolation. This means that if the treated
unit has an outcome greater (or lower) than all the control units, this canonical for‐
mulation won’t be able to craft a synthetic control to recover E Y0 D = 1 . You can
view this as a limitation, but it is actually meant as a guardrail. It’s a way of saying that
the treatment units you are trying to reconstruct are very different from the ones in
the control group and therefore you shouldn’t even try.

To code the canonical version of SC, you can use convex optimization software, like
cvxpy. cvxpy allows you to define an optimization objective with cp.Minimize. For
SC, you want to minimize the squared error, so cp.Minimize( cp.sum_ squares(
y_co_pre@w - y_tr_pre)). It also allows you to pass optimization constraints. Here,
you want all the ws to be nonnegative and np.sum(w)==1.

In the following code, I’m building the synthetic control model following scikit-
learn’s boilerplate. To do that, you can extend BaseEstimator and RegressorMixin
and define a .fit and a .predict method. The rest of the code, like check_X_y,

284 | Chapter 9: Synthetic Control



check_array, and check_is_fitted are just some standard checks you don’t need to
worry about:

In [10]: from sklearn.base import BaseEstimator, RegressorMixin
         from sklearn.utils.validation import (check_X_y, check_array,
                                               check_is_fitted)
         import cvxpy as cp

         class SyntheticControl(BaseEstimator, RegressorMixin):

             def __init__(self,):
                 pass

             def fit(self, y_pre_co, y_pre_tr):

                 y_pre_co, y_pre_tr = check_X_y(y_pre_co, y_pre_tr)
             
                 w = cp.Variable(y_pre_co.shape[1])
                 
                 objective = cp.Minimize(cp.sum_squares(y_pre_co@w - y_pre_tr))
                 constraints = [cp.sum(w) == 1, w >= 0]
                 
                 problem = cp.Problem(objective, constraints)
                 
                 self.loss_ = problem.solve(verbose=False)
                 self.w_ = w.value
                 
                 self.is_fitted_ = True
                 return self
                 
                 
             def predict(self, y_co):

                 check_is_fitted(self)
                 y_co = check_array(y_co)
                 
                 return y_co @ self.w_
         

Having defined the SyntheticControl class, you can use it pretty much like you used
LinearRegression before. Notice that I’m storing the final loss of the estimated
model. This will come in handy if you want to incorporate covariates in your model,
as you’ll soon see. Also, after the model is fitted, you can access the weights with .w_:

In [11]: model = SyntheticControl()
         model.fit(y_pre_co, y_pre_tr.mean(axis=1))

         # extrac the weights
         model.w_.round(3)
         

Canonical Synthetic Control | 285



Out[11]: array([-0.   , -0.   , -0.   , -0.   , -0.   , -0.   ,  0.076,  0.037,
                 0.083,  0.01 , -0.   , -0.   , -0.   , -0.   , -0.   , -0.   ,
                 0.061,  0.123,  0.008,  0.074, -0.   ,  0.   , -0.   , -0.   ,
                -0.   , -0.   , -0.   , -0.   , -0.   ,  0.   , -0.   ,  0.092,
                -0.   , -0.   ,  0.   ,  0.046,  0.089,  0.   ,  0.067,  0.061,
                 0.   , -0.   , -0.   ,  0.088,  0.   ,  0.086, -0.   ])
         

Notice another interesting thing: the convexity constraints you’ve imposed give a
sparse solution to the optimization problem. Only a handful of cities are used to craft
the final synthetic control. From this point onward, it’s exactly the same thing as
before. You can make predictions on the entire dataset to obtain the synthetic control
estimate for E Y0 D = 1  and use that to get the ATT estimate:

Compare this ATT plot with the one you got earlier, using unconstrained regression.
Now, the training (pre-treatment) error is a bit larger, but the ATT is less noisy. This
is regularization in action.

Regularized Regression

Once you realize that synthetic control is just horizontal regression,
you can find other ways to regularize it. For instance, you can use
lasso or ridge regression. Still, it makes a lot of sense to not allow
negative weights, especially if the units are geographies, as the out‐
come tends to be positively correlated among those.

286 | Chapter 9: Synthetic Control



Synthetic Control Assumptions
Just like with difference-in-differences, you also have to assume no anticipation of the
treatment and no spillovers when using synthetic control. The main difference
between the two methods is the parametric assumption about the potential outcome
model. In diff-in-diff, you had to assume that the trend in Y0 for the treated units was
parallel to the Y0 trend from the control units. Synthetic control, on the other hand,
allows a more flexible (but also more complicated) model for that potential outcome:
a vector autoregressive model or a linear factor model. For the factor model:

Y0it = λ
�
′�� + eit,

if you set λ1 = 1, f 1 = βt and λ1 = αi, f 1 = 1, you can see that it becomes a generaliza‐
tion of the two-way-fixed-effects model Y0it = αi + βt + eit.

In the paper “Using Synthetic Controls: Feasibility, Data Requirements, and Meth‐
odological Aspects,” Alberto Abadie argues that if the potential outcome follows
either the vector autoregressive or the linear factor model and the synthetic control
matches the treated unit, then the synthetic control method produces an unbiased
estimate to the ATT. In practice, that SC can only approximate the treated unit, so
some bias is to be expected.

Synthetic Control with Covariants
Usually, synthetic control uses just the pre-treatment outcome from the control units
as features to predict Ytr. That’s because those tend to be the most predictive feature
at your disposal. However, you might wish to include some additional covariates in
the model, if you think they have a good predictive power. This is quite rare, though,
so, if you are short of time, you can skip this section.

Let’s say you somehow manage to get data on the daily number of downloads from
your main competitor, which you’ve also normalized by the market size, comp_down
load_pct. You think this covariate is a good predictor of Ytr, so you want to include it
in the synthetic control model:

In [12]: df_norm_cov = (pd.read_csv("./data/online_mkt_cov.csv")
                        .astype({"date":"datetime64[ns]"}))

         df_norm_cov.head()
         

Synthetic Control with Covariants | 287



app_download city date post treated app_download_pct comp_download_pct
0 3066.0 sao_paulo 2022-03-01 0 1 0.024733 0.026280
1 2701.0 sao_paulo 2022-03-02 0 1 0.021789 0.023925
2 1927.0 sao_paulo 2022-03-03 0 1 0.015545 0.018930
3 1451.0 sao_paulo 2022-03-04 0 1 0.011705 0.015858
4 1248.0 sao_paulo 2022-03-05 0 1 0.010067 0.014548

In mathematical notation, you want to construct a synthetic control such that the
weight wi is not only multiplied by yco, but also by this extra covariate, xco, in order to
approximate Ytr. The issue here is that xco and yco might be in completely different
scales or one can be more predictive than the other, which is why you need to multi‐
ply each covariate, including yco, by a scaling factor v, before solving the SC optimiza‐
tion problem. To take that into account, you can rewrite the objective in terms of
covariates X, treating yco as just another covariate:

wsc = argmin
ω

�pre, tr − ∑vk*�k, pre, coωco
2

s.t ∑ωi = 1 and ωi > 0 ∀ i

However, this objective doesn’t tell you how to find the optimal v. In order to do that,
you’ll have to wrap the entire synthetic control into yet another optimization objec‐
tive. If it sounds complicated, don’t worry. It is a lot easier to understand it in code.
First, let’s create the X matrix for both covariates, comp_download_pct and Y pre, co,
app_download_pct:

In [13]: from toolz import partial

         reshaper = partial(reshape_sc_data,
                            df=df_norm_cov,
                            geo_col="city",
                            time_col="date",
                            tr_geos=treated,
                            tr_start=str(tr_period))

         y_pre_co, y_pre_tr, y_post_co, y_post_tr = reshaper(
             y_col="app_download_pct"
         )

         x_pre_co, _, x_post_co, _ = reshaper(y_col="comp_download_pct")
         

Next, let’s write a function which, when given a list of vs, one for each covariate,
returns the synthetic control weights and the optimization loss. Remember that you
can access the objective loss from a fitted SyntheticControl model with .loss_.

288 | Chapter 9: Synthetic Control



To check if this is working, you can pass [1, 0] as the vs and [y_pre_co, x_pre_co]
as the covariate list. You should get back the original synthetic control, since the extra
covariate has zero weight in this case:

In [14]: def find_w_given_vs(vs, x_co_list, y_tr_pre):
             X_times_v = sum([x*v for x, v in zip(x_co_list, vs)])
             
             model = SyntheticControl()
             model.fit(X_times_v, y_tr_pre)
             
             return {"loss": model.loss_, "w": model.w_} 

         
         find_w_given_vs([1, 0],
                         [y_pre_co, x_pre_co],
                         y_pre_tr.mean(axis=1)).get("w").round(3)
         

Out[14]: array([-0.   , -0.   ,  0.   , -0.   , -0.   , -0.   ,  0.084,  0.039,
                 0.085,  0.003, -0.   , -0.   , -0.   , -0.   , -0.   ,  0.   ,
                 0.062,  0.121, -0.   ,  0.072, -0.   ,  0.   , -0.   ,  0.   ,
                -0.   , -0.   ,  0.   , -0.   , -0.   ,  0.   , -0.   ,  0.095,
                 0.   , -0.   ,  0.   ,  0.022,  0.116, -0.   ,  0.068,  0.046,
                -0.   , -0.   , -0.   ,  0.088,  0.   ,  0.098, -0.   ])
         

Finally, you can wrap find_w_given_vs in a function that just takes the array of vs
and returns the optimization loss. Then, you can then pass this function to scipy mini
mize function, which will iteratively look for the best vs and return them to you:

In [15]: from scipy.optimize import minimize

         def v_loss(vs):
             return find_w_given_vs(vs,
                                    [y_pre_co, x_pre_co],
                                    y_pre_tr.mean(axis=1)).get("loss")

         
         v_solution = minimize(v_loss, [0, 0], method='L-BFGS-B')
         v_solution.x
         

Out[15]: array([1.88034589, 0.00269853])
         

Synthetic Control with Covariants | 289



With the optimal vs, you can go back to find_w_given_vs to obtain the synthetic
control weights that take the covariates into account. One thing to notice, though, is
that the final solution is not much different from the one without covariants. This is
not surprising, since the optimal v for the comp_download_pct covariate is a very
small number and it is not on a much larger scale than app_download_pct:

In [16]: w_cov = find_w_given_vs(v_solution.x,
                                 [y_pre_co, x_pre_co],
                                 y_pre_tr.mean(axis=1)).get("w").round(3)

         w_cov
         

Out[16]: array([-0.   , -0.   ,  0.   , -0.   , -0.   , -0.   ,  0.078,  0.001,
                 0.033,  0.   , -0.   ,  0.034, -0.   , -0.   , -0.   ,  0.   ,
                 0.016,  0.047,  0.03 ,  0.01 , -0.   , -0.   ,  0.   ,  0.055,
                -0.   ,  0.   , -0.   ,  0.   ,  0.   ,  0.   , -0.   ,  0.046,
                 0.078,  0.007,  0.   ,  0.   ,  0.138,  0.   ,  0.022,  0.008,
                -0.   ,  0.201,  0.   ,  0.035,  0.   ,  0.161, -0.   ])
         

With these weights, you can make predictions for Y 0  and obtain the final ATT esti‐
mate that considers covariates:

In [17]: y0_hat = sum([x*v for x, v 
                       in zip([y_post_co, x_post_co], v_solution.x)]).dot(w_cov)

         att = y_post_tr.mean(axis=1) - y0_hat
         

The following plot shows the resulting ATT, alongside the ATT estimate from the
canonical SC, without covariates. As you can see, both are pretty similar:

290 | Chapter 9: Synthetic Control



Although not hard, including covariates requires a fair amount of extra complexity.
For this reason and due to the fact that Y pre, co tends to be enough to predict Ytr, I
usually don’t bother with adding covariates. But maybe you can find very predictive
features that would justify it.

Generic Horizontal Regression
A simpler way to add covariates is to just concatenate any additional time series you
deem worthy as a column to �pre, co. This would be equivalent to adding additional
covariates in the horizontal regression:

�pre, co �pre, co ω

This wouldn’t be a synthetic control in the strict sense of the words, since you are now
estimating E Y 0 tr  with the control units and those extra time series. As a result,
you’ll end up with weights not only for the units, but for each additional column that
you’ve concatenated.

Debiasing Synthetic Control
Much like with powerful machine learning models, these prediction techniques are
prone to overfitting, especially when the number of pre-treatment periods Tpre is
small. Even the constraints imposed on the canonical synthetic control doesn’t solve
that completely. As a result, SC is known to be biased. To understand that, let’s rede‐
fine the ATT as the average across time in the post-intervention periods:

ATT = 1
T1 ∑

t = T0 + 1

T
Y1t − Y0t ,

where T0 and T1 are the size of the pre- and post-intervention periods, respectively,
and Ydt is the average potential outcome of the treated units. This simply averages the
ATT for each individual post-intervention period into a single number, making it eas‐
ier to work with it. Now, to check for bias in the SC method, you can compare that
single number against its estimate. Figure 9-2 shows that bias.

I’m simulating a bunch of data following the synthetic control specification—with the
treated unit being a weighted combination of some control units. Here, N = 16 and
Tpre = 15, so there are more columns than rows in the horizontal regression. Also,
the true ATT is zero. Still, the resulting distribution of ATT estimates you get with
synthetic control is not centered at zero, showing how it is indeed biased.

Debiasing Synthetic Control | 291



Figure 9-2. Synthetic control estimator is not unbiased, as it rarely manages to correctly
specify the outcome model

Fortunately, you learned how to solve for overfitting bias in Chapter 7, when you saw
Double/Debiased ML. The answer lies in cross-fitting. The idea is to partition the pre-
intervention period into K blocks, each of size min Tpre/K, Tpost  (the reason for this
min function will become clear soon. For now, just trust me). Then, you’ll treat each
block as a hold-out set and fit a synthetic control model on Y pre, co

−k  and Y pre, tr
−k , where

−k means you’ll drop the block from training. This step will give you weights ω−k.
Next, you’ll use those weights to make out-of-sample predictions using the held-out
data Y pre, co

k . The average difference between the predictions and the observed values
in the hold-out data is an estimate for the bias:

Biask = avg �pre, tr
k −�pre, co

k ω−k ,

which means you can use it to adjust the ATT estimate:

ATTk = �post, tr −�post, coω−k − Biask

Notice that this will give you K different ATTs. You can average them out to get a
final ATT estimate.

Now, let’s put this into Python code. The trickiest part here is to define the blocks. So,
to make it more clear, let’s go over a simple example, shown in Figure 9-3.

292 | Chapter 9: Synthetic Control



Figure 9-3. Cross-prediction can be used to estimate the bias and correct it

Suppose that you have five pre-intervention periods and three post-intervention peri‐
ods and you want to build K = 2 blocks. The block size is 2.5, which is not an integer,
so you have to floor it to two. This means you’ll take two blocks of size two out of the
pre-intervention period. 2 × 2 will give you four time periods, but you have five. So,
I’m choosing to take the blocks from the end of the pre-intervention period, which
will cause the first time period to never be removed. This is rather arbitrary, but
doesn’t have a huge impact on the whole procedure. You could also choose to trim the
pre-intervention period to make it divisible by K.

Then, for each of the two blocks, you’ll take it out of the training set, and estimate an
SC model to obtain ω−k. With these weights, you’ll move to the removed block and
estimate the bias term. Finally, you’ll use both weights and bias estimates to make an
ATT estimate in the post-intervention period.

Even though it is a bit complicated to describe, it is fairly easy to get these blocks with
NumPy. First, you’ll index into the end of the pre-intervention period,
y_pre_tr.index[-K*block_size:] to get an index with exactly K blocks. Then, you
can use np.split to break those indexes into K blocks. This will return an array with
K rows, each one containing the index that you want to remove in each iteration.
Once you have those blocks, you can iterate over them, fitting an SC model, estimat‐
ing the bias and the ATT in the post-intervention period. The result can be stored in
a data frame for convenient display:

In [18]: def debiased_sc_atts(y_pre_co, y_pre_tr, y_post_co, y_post_tr, K=3):
                 
             block_size = int(min(np.floor(len(y_pre_tr)/K), len(y_post_tr)))
             blocks = np.split(y_pre_tr.index[-K*block_size:], K)
             

Debiasing Synthetic Control | 293



             def fold_effect(hold_out):
                 model = SyntheticControl()
                 model.fit(
                     y_pre_co.drop(hold_out),
                     y_pre_tr.drop(hold_out)
                 )
                 
                 bias_hat = np.mean(y_pre_tr.loc[hold_out]
                                    - model.predict(y_pre_co.loc[hold_out]))
                 
                 y0_hat = model.predict(y_post_co)
                 return (y_post_tr - y0_hat) - bias_hat
             
             
             return pd.DataFrame([fold_effect(block) for block in blocks]).T
         

To apply this function to the (already pivoted) marketing data, you just need to
remember to average the treated units. The result is a data frame with all the ATT
estimates. It has K columns and one row for each post-intervention period:

In [19]: deb_atts = debiased_sc_atts(y_pre_co,
                                     y_pre_tr.mean(axis=1),
                                     y_post_co,
                                     y_post_tr.mean(axis=1),
                                     K=3)

         deb_atts.head()
         

0 1 2

date
2022-05-01 0.003314 0.002475 0.003228
2022-05-02 0.003544 0.002844 0.003356
2022-05-03 0.004644 0.003698 0.004744
2022-05-04 0.004706 0.002866 0.003630
2022-05-05 0.000134 -0.000541 0.000243

To get a final ATT estimate for each post-intervention period you can average out the
columns, deb_atts.mean(axis=1), or, if you want a single ATT for the entire period,
just average everything: deb_atts.mean(axis=1).mean(). Plotting the debiased ATT
alongside the canonical SC ATT you got earlier also shows that, for most parts, the
debiasing increased the ATT estimate, although not by much:

294 | Chapter 9: Synthetic Control



It’s difficult to see a difference in your marketing data, but to show why debiasing is
important, I can redo the simulations from before, but now using the debiasing pro‐
cedure. Now, the distribution of ATTs from the simulation has mean zero, as it
should be:

Inference
The debiasing procedure is useful on its own, but there is also a second reason why it
is interesting, which is to place a confidence interval around the synthetic control
ATT estimate. Doing inference with synthetic control has proven to be a daunting
task, mostly because there are usually very few control units, or even just one. The
block bootstrap you learned in Chapter 8 won’t work here because a lot of the boot‐
strap samples will throw out all the treated units, making the ATT undefined.

Inference for the synthetic control method is an active area of research, which is rap‐
idly changing. Over the last few years, many approaches have been proposed. Most of
them rely on permuting the time dimension, as bootstrapping the units seems

Inference | 295



problematic. Here, I chose one of those methods that I find quite simple to imple‐
ment and very computationally efficient. Especially if you already dealt with the
debiasing part, because it uses it as a starting point. Just as a refresher, recall that
debiasing gave you one ATT estimate for each of the K folds and for each post-
intervention time period, which are represented as the columns of the following data
frame:

In [20]: deb_atts.head()
         

0 1 2

date
2022-05-01 0.003314 0.002475 0.003228
2022-05-02 0.003544 0.002844 0.003356
2022-05-03 0.004644 0.003698 0.004744
2022-05-04 0.004706 0.002866 0.003630
2022-05-05 0.000134 -0.000541 0.000243

Now, let’s say that you are interested in placing a confidence interval around the over‐
all ATT estimate in the post-intervention period. To do so, the first thing you need is
the ATT itself. You can average out the rows of this data frame, which will give you a
single ATT for each of the K folds. Then, you can take the average of that:

In [21]: atts_k = deb_atts.mean(axis=0).values
         att = np.mean(atts_k)

         print("atts_k:", atts_k)
         print("ATT:", att)
         

Out[21]: atts_k: [0.00414872 0.00260513 0.00318584]
         ATT: 0.003313226501636449
         

Now, for the inference part. The idea here is to construct a standard error estimate
based on each of the ATTk:

σ = 1 + BlockSize * K
Tpost

* 1
K − 1 ∑k = 1

K ATTk − ATT

SE = σ / K

When coding this, you just need to be careful to use the sample standard deviation,
which means passing ddof=1 to np.std:

296 | Chapter 9: Synthetic Control



In [22]: K = len(atts_k)
         T0 = len(y_pre_co)
         T1 = len(y_post_co)
         block_size = min(np.floor(T0/K), T1)

         se_hat=np.sqrt(1+((K*block_size)/T1))*np.std(atts_k, ddof=1)/np.sqrt(K)

         print("SE:", se_hat)
         

Out[22]: SE: 0.0006339596260850461
         

With that standard error, you can construct a test statistic ATT /SE which, under the
null hypothesis H0: ATT = 0, has asymptotic t-distribution with K − 1 degrees of
freedom. This means you can leverage it to construct a confidence interval using the
t-distribution. For instance, here is how you can construct a 90% CI (α = 0.1):

In [23]: from scipy.stats import t
         alpha = 0.1

         [att - t.ppf(1-alpha/2, K-1)*se_hat,
          att + t.ppf(1-alpha/2, K-1)*se_hat]
         

Out[23]: [0.0014620735349405393, 0.005164379468332358]
         

You might look at that K in the denominator of the standard error formula and be
tempted to set it to a very large number. However, there is no free lunch here. Higher
values of K result in smaller confidence intervals at the cost of lowering the coverage
of those intervals. For high Ks, the 1 − α CIs will contain the true ATT less than 1 − α
of the time, especially when the number of pre-treatment periods is small. In this
case, a reasonable choice of K is 3. When T0 is very large, compared to N, you can try
larger values of K to decrease the length of the confidence interval.

Another important point is that this method does not apply to the treatment effect
trajectory. That is, it can’t be used for a per-period inference, as its theory requires
both T0 and T1 to be relatively large.

See Also

This inference methods was proposed in the paper “A T-Test for
Synthetic Controls,” by Victor Chernozhukov et al. If you want to
perform per-period inference, the same authors have a comple‐
mentary paper that proposes conformal inference for synthetic
controls: “An Exact and Robust Conformal Inference Method for
Counterfactual and Synthetic Controls.”

Inference | 297



Synthetic Difference-in-Differences
To close this chapter, I wanted to give you yet another perspective on synthetic con‐
trol, which is how it relates to difference-in-differences. By doing so, you’ll also learn
how to combine both methods into a single synthetic difference-in-differences
(SDID) estimator. The idea here is quite simple. First, construct a synthetic control.
Then, use it as the control unit in a DID setting. The end result is something much
more interesting than the sum of its parts. First, the parallel assumption required for
DID becomes much more plausible, since you are crafting a synthetic control for
E Y 0 ti D = 1 . Second, because you are using DID, the synthetic control can focus
on capturing just the trend of the treated unit, as it can have a different level of Y 0 .
But first, before going into SDID, let’s review some DID theory.

DID Refresher
In its canonical form, with one control block (never treated) and one treated block
that gets treated all at the same time period, you could write DID with two-way fixed
effects:

τ did = argmin
μ, α, β, τ

∑
n = 1

N
∑

t = 1

T
Yit − μ + αi + βt + τWit

2 ,

where τ is the ATT you care about, αi are the unit-fixed effects, and βt are the time-
fixed effects. In this formulation, the unit effects capture the difference in intercepts
for each unit while the time effects capture the general trend across both treated and
control units. The main assumption behind the DID method is that the treated and
untreated have the same Y0 trend:

ΔY d i ⊥ D

Synthetic Controls Revisited
Next, let’s see how you can recast the synthetic control estimator into something that
resembles the preceding DID formulation. Interestingly enough, you can write the SC
estimator as solving the following optimization problems:

τ sc = argmin
β, τ

∑
n = 1

N
∑

t = 1

T
Yit − βt − τWit

2ωi
sc ,

298 | Chapter 9: Synthetic Control



where the weights for the control units ωi
sc are obtained by optimizing the synthetic

control objective you saw at the beginning of the chapter. Since the preceding
formulation of the SC objective is defined for all units, not just the control, you also
need to think about the treatment units’ weight. Here, since you care about the ATT,
they are simply Ntr/N (uniform weighting).

To verify that this new formulation is indeed equivalent to the one you learned earlier,
let’s compare the two. First, estimate SC as you’ve done so far and compute the ATT:

In [24]: sc_model = SyntheticControl()
         sc_model.fit(y_pre_co, y_pre_tr.mean(axis=1))

         (y_post_tr.mean(axis=1) - sc_model.predict(y_post_co)).mean()
         

Out[24]: 0.0033467270830624114
         

Next, let’s add these synthetic control weights to the original marketing data frame,
before the matrix reshaping. To do that, you can create a unit weights data frame that
maps each control city to its weight:

In [25]: unit_w = pd.DataFrame(zip(y_pre_co.columns, sc_model.w_),
                                  columns=["city", "unit_weight"])

         unit_w.head()
         

city unit_weight
0 ananindeua -1.649964e-19
1 aparecida_de_goiania -7.047642e-21
2 aracaju 4.150540e-19
3 belem -3.238918e-19
4 belford_roxo -5.756475e-19

Then, you can merge this unit weight data frame into the original marketing data
frame using city as the key. This will leave the treatment unit with NaN weights. You
can fill those up with the average of the treatment dummy, which is Ntr/N.

I’ll also take this opportunity to create the Wit variable, by multiplying Di * Postt:

In [26]: df_with_w = (df_norm
                      .assign(tr_post = lambda d: d["post"]*d["treated"])
                      .merge(unit_w, on=["city"], how="left")
                      .fillna({"unit_weight": df_norm["treated"].mean()}))
                      
         df_with_w.head()
         

Synthetic Difference-in-Differences | 299



app_download population city ... app_download_pct tr_post unit_weight
0 3066.0 12396372 sao_paulo ... 0.024733 0 0.06
1 2701.0 12396372 sao_paulo ... 0.021789 0 0.06
2 1927.0 12396372 sao_paulo ... 0.015545 0 0.06
3 1451.0 12396372 sao_paulo ... 0.011705 0 0.06
4 1248.0 12396372 sao_paulo ... 0.010067 0 0.06

Finally, you can run weighted OLS with time-fixed effects, following the alternative
synthetic control formulation from earlier. Just be careful to remove the rows with
very small weights, otherwise you might run into some errors while trying to run this
regression:

In [27]: mod = smf.wls(
             "app_download_pct ~ tr_post + C(date)",
             data=df_with_w.query("unit_weight>=1e-10"),
             weights=df_with_w.query("unit_weight>=1e-10")["unit_weight"]
         )

         mod.fit().params["tr_post"]
         

Out[27]: 0.00334672708306243
         

Indeed, the ATT obtained here is exactly the same as the one you got earlier, which
shows that both synthetic control formulations are equivalent. But more importantly,
it’s easier to compare the new SC formulation with the TWFE formulation of DID.
First, it looks like SC has time-fixed effects, but not unit-fixed effects. Meanwhile DID
has both time- and unit-fixed effects, but no unit weights. This suggests a merger
between the two models that include elements from both SC and DID:

τ sdid = argmin
μ, α, β, τ

∑
n = 1

N
∑

t = 1

T
Yit− μ +αi + βt + τDit

2ωi

And while you are at it, why only weigh the units? Always remember the end goal
here: to estimate E Y0 Post = 1, Tr = 1 . The purpose of unit weights is to use the
control units to approximate the treated units. But there is also a time dimension
here, which means you could also use weights in the pre-treatment periods to better
approximate the post-treatment period. This would give you the following SDID
formulation:

τ sdid = argmin
μ, α, β, τ

∑
n = 1

N
∑

t = 1

T
Yit− μ +αi + βt + τDit

2ωiλt ,

300 | Chapter 9: Synthetic Control



where λ t are time weights.

Estimating Time Weights
Remember how, in order to get the unit weights, you’ve regressed the average out‐
come of the treated units on the outcome of the control units, both in the pre-
treatment period?

ωi
sc = argmin

ω
�pre, tr −�pre, coωco

2

s.t ∑ωi = 1 and ωi > 0 ∀ i

Well, to get time weights, you just need to transpose the �pre, co and regress it on the
average outcome of the control on the post-treatment period:

λt
sc = argmin

w
�pre, co′ −�pre, co′ λpre

2

s.t ∑λi = 1 and λi > 0 ∀ i

But there is an additional catch here. Remember how SC doesn’t allow for extrapola‐
tions? This would be a problem if you had some kind of trend in the outcome. If that
was the case, the average post-treatment period would have a higher or lower out‐
come than all the pre-treatment periods and you would need to extrapolate in order
to get a good fit. For this reason, the SDID formulation allows for an intercept shift λ0
when finding the time weights:

λt
sc = argmin

w
�pre, co′ − �pre, co′ λpre + λ0

2

s.t ∑λi = 1 and λi > 0 ∀ i

Fortunately, it is fairly easy to modify the SyntheticControl code to optionally fit the
intercept, using a fit_intercept parameter. First, you’ll create an intercept column
that is always 1 if fit_intercept=True and zero otherwise. You can take advantage of
the fact that multiplying True*1=1 in Python. Then, you’ll prepend this column into
y_pre_co and use that in the objective function. Also, when building the constraints,
you don’t want to include the intercept. In the end, you’ll get rid of the intercept
parameter, returning only the units’ weights.

Synthetic Difference-in-Differences | 301



I won’t show the entire code because it is fairly repetitive, but here is just the part that
changes:

        # add intercept
        intercept = np.ones((y_pre_co.shape[0], 1))*self.fit_intercept
        X = np.concatenate([intercept, y_pre_co], axis=1)
        w = cp.Variable(X.shape[1])
        
        objective = cp.Minimize(cp.sum_squares(X@w - y_pre_tr))
        constraints = [cp.sum(w[1:]) == 1, w[1:] >= 0]
        
        problem = cp.Problem(objective, constraints)
        
        self.loss_ = problem.solve(verbose=False)
        self.w_ = w.value[1:] # remove intercept

Once you deal with that, you can move on to estimate the time weights:

In [28]: time_sc = SyntheticControl(fit_intercept=True)

         time_sc.fit(
             y_pre_co.T,
             y_post_co.mean(axis=0)
         )

         time_w = pd.DataFrame(zip(y_pre_co.index, time_sc.w_),
                                  columns=["date", "time_weight"])

         time_w.tail()
         

date time_weight
56 2022-04-26 -0.000011

57 2022-04-27 0.071965

58 2022-04-28 -0.000002
59 2022-04-29 0.078350
60 2022-04-30 0.000002

I also already stored the weights in a data frame, which you’ll use later. You can also
plot these weights to see how the pre-treatment time periods are being used to recon‐
struct the average outcome of the control in the post-treatment period:

302 | Chapter 9: Synthetic Control



Synthetic Control and DID
OK. So you have weights for the pre-intervention period and weights for all the units.
All there is left to do is join these pieces into a final estimator. You can start from the
previously defined data frame df_with_w and join in the time weights data frame,
using date as the key. Since time_w has weights only for the pre-intervention period,
you need to fill in the post-intervention time weights with Tpost/T (also uniformly
weighting them). Finally, multiply both λt and ωi and you are good to go:

In [29]: scdid_df = (
             df_with_w
             .merge(time_w, on=["date"], how="left")
             .fillna({"time_weight":df_norm["post"].mean()})
             .assign(weight = lambda d: (d["time_weight"]*d["unit_weight"]))
         )
         

You can now run DID using the scdid_df data and weighted regression. The parame‐
ter estimate associated with Wit = Di * Postt is the ATT estimate you care about:

In [30]: did_model = smf.wls(
             "app_download_pct ~ treated*post",
             data=scdid_df.query("weight>1e-10"),
             weights=scdid_df.query("weight>1e-10")["weight"]).fit()

         did_model.params["treated:post"]
         

Out[30]: 0.004098194485564245
         

To grasp what SDID is doing, you can plot the diff-in-diff lines for the treated units
and the counterfactual trend (dashed line) obtained by using the synthetic control’s
trend and projecting it into the treated’s baseline. The difference between the two is

Synthetic Difference-in-Differences | 303



the ATT estimate you just estimated. I’m also plotting the time weights on a second
plot. You can see how SDID uses mostly time periods that are closer to the post-
intervention period:

This SDID estimate is a bit higher, but not much different from the ATT of the can‐
onical SC. So, why is SDID interesting? The SC component of the estimator makes
the DID’s parallel trend assumption more plausible. It’s much easier to get parallel
trends if you first craft a synthetic control to mimic the treated units. As a result,
SDID tends to have lower bias, compared to both DID and SC. Second, SDID also
tends to have lower variance than both methods. The original paper has simulation
results to show this, in case you are interested.

The Original SDID
This SDID estimator is a simplification on top of the original SDID estimator, which
was proposed in the paper “Synthetic Difference in Differences,” by Dmitry Arkhan‐
gelsky et al. The paper proposes a slightly different optimization objective for the unit
weights:

ωi
scdid = argmin

ω
�pre, tr − �pre, coωco + ω0 2

2 + ζ2Tpre ωco 2
2

s.t ∑ωi = 1 and ωi > 0 ∀ i

304 | Chapter 9: Synthetic Control



First, this objective also allows an intercept shift. The reason here is that the synthetic
control doesn’t need to exactly match the treated unit, only its trend, since you’ll plug
them in a DID model afterward. Second, they add an L2 penalty on the unit weights,
which includes this new ζ term:

ζ = Ntr * Tpost
1/4σ Yit − Yi t − 1

There is a complicated theoretical reason for this ζ that I won’t go into, but the main
idea behind the additional L2 penalty is to make sure no single unit gets a dispropor‐
tionately large weight. As a result, these weights tend to be more spread out across
more units than that of the canonical synthetic control method.

The paper also proposed a new inference procedure, designed specifically for SDID. If
that isn’t enough reasons to check it out, I don’t know what is.

Of course, there is no free lunch. By allowing intercept shifts, SDID removes the con‐
vexity guardrail from SC. Depending on the situation, you can view this as either
good, since SDID allows more flexibility, or bad, since it also allows dangerous
extrapolations.

Key Ideas
If there is one thing I want you to take out from this chapter is that you can have a
model-based approach to estimating E Y 0 t D = 1, Post = 1 : just fit a model to pre‐
dict pre-treatment outcome of the treated on a bunch of equally pre-treatment time
series and use that model to make predictions on the post-treatment period. Usually,
those time series are the outcome of control units, and this approach amounts to a
horizontal regression of the treated outcome on the control outcome, all in the pre-
intervention period:

ωsc = argmin
ω

�pre, tr −�pre, coωco 2
2

The result is a set of weights which, when multiplied by the control units, yields a
synthetic control: a combination of control units that approximate the behavior of the
treated units, at least in the pre-intervention period. If that approximation is good
and generalizes into the post-intervention period, you can use it to estimate the ATT:

ATT = �post, tr −�post, coωco

Key Ideas | 305



That is the basic idea. You can build up from it. For example, in the canonical syn‐
thetic control setting, you would add the constraints ∑ωi = 1 and ωi > 0 ∀ i or use
something like lasso regression. But the basic idea remains: use the pre-intervention
period to regress the pre-treatment outcome on very predictive time series and
extend those predictions to the post-intervention period.

See Also

Yiqing Xu has a bunch of papers on generalizing synthetic control,
as well as software implementing those approaches. To name a few,
the paper “Generalized Synthetic Control Method: Causal Infer‐
ence with Interactive Fixed Effects Models” also mixes qualities
from both DID and synthetic control, generalizing this last one to
variable treatment periods (staggered adoption design). In “Baye‐
sian Alternative to Synthetic Control for Comparative Case Stud‐
ies,” the authors also propose a Bayesian model to estimate
counterfactuals.

PRACTICAL EXAMPLE

Causal Impact
Google’s research team capitalized on the main idea behind synthetic controls to build
the causalimpact library. They use Bayesian structural time-series models to esti‐
mate the counterfactual time series for E Y 0 D = 1  by using other time series that
are themselves not affected by the treatment. The fact that the method is Bayesian
also allows them to give uncertainty metrics quite naturally.

306 | Chapter 9: Synthetic Control



PART V

Alternative Experimental Designs





CHAPTER 10

Geo and Switchback Experiments

In Part IV of this book, you learned how to use repeated observations over time to aid
in the process of causal inference. Now, in this chapter, you will approach the same
problem from a different angle. What if, instead of having to use panel data to iden‐
tify a treatment effect, you had to design an experiment to gather that data? Part V of
this book is dedicated to alternative experimental design when simple A/B testing
won’t work.

For example, let’s consider the marketing problem from the previous chapter.
Remember that inferring the impact of marketing is challenging because you cannot
randomize people who are not yet your customers. Online marketing provides you
with attribution tools, but attribution is not the same as incrementality. In this case, a
promising alternative is to conduct a geo-experiment: treat entire markets, such as a
city or a state, while leaving others as control. This approach would provide you with
panel data to which you could apply the techniques learned in Part IV. However, in
Part IV, you took the panel data as given and did not learn how to best select the
treated and control markets in such an experiment. In this chapter, you will cover that
gap. The first part of this chapter will teach you how to select geographical treatment
units to get an effect estimate that approximates the effect you would have if the
entire market (country, state) were treated.

The idea is to zoom out the unit of analysis from customers to cities or states. Of
course, this comes at a price in terms of sample size since there are far more custom‐
ers than there are cities. In some extreme cases, even randomizing cities may not be
possible. For instance, if you are a small company operating locally, you may not have
many markets in which to conduct an experiment. In the limit, you may have only a
single unit of analysis. Fortunately, there is still a way out. Switchback experiments
involve turning a treatment on and off multiple times. This approach can work even
if you have only a single treatment unit. For example, if you are a small food delivery

309



marketplace operating within a single city and you want to know what happens if you
increase the delivery fee, you can increase and decrease prices multiple times and
conduct a series of before-and-after analyses. The remainder of this chapter will
expand on this idea and how to design a switchback experiment.

Geo-Experiments
To motivate the use of geo-experiments, let’s take the same data and example from the
previous chapter. Again, you have the city as the unit and date as the time dimension;
a treated column, which marks if the city is eventually treated; and a post-treatment
column, which marks the post-intervention period. You also have some auxiliary col‐
umns, like the population in that city (recorded in 2013, so fixed in time) and the
state. Here, you’ll work with the outcome: number of app downloads. And since the
goal is to decide which city to treat, you’ll discard the post-intervention period:

In [1]: import pandas as pd
        import numpy as np

        df = (pd.read_csv("./data/online_mkt.csv")
              .astype({"date":"datetime64[ns]"})
              .query("post==0"))

        df.head()
        

app_download population city state date post treated
0 3066.0 12396372 sao_paulo sao_paulo 2022-03-01 0 1
1 2701.0 12396372 sao_paulo sao_paulo 2022-03-02 0 1
2 1927.0 12396372 sao_paulo sao_paulo 2022-03-03 0 1
3 1451.0 12396372 sao_paulo sao_paulo 2022-03-04 0 1
4 1248.0 12396372 sao_paulo sao_paulo 2022-03-05 0 1

The objective is to select a group of cities that is representative of the total market.
That way, if you treat that group, you’ll get an idea of what would happen if the entire
market (i.e., country) was treated. Before you do anything fancy, it’s worth trying the
simple things. If you have lots of geographical units (i.e., many cities), perhaps a sim‐
ple A/B testing would work just fine. Simply choose at random a fraction of the cities
to compose the treatment group. The only difference here is that you would be shift‐
ing the unit of analysis from people (potential customers) to entire cities.

Still, it’s hard to know how many cities are enough. You could start with the sample
size formula from Chapter 2 (n = 16σ2/δ2). For instance, if you wish to detect an
effect of 5%, it would tell you that you need about 40k cities to run that experiment:

In [2]: detectable_diff = df["app_download"].mean()*0.05
        sigma_2 = df.groupby("city")["app_download"].mean().var()

310 | Chapter 10: Geo and Switchback Experiments



        np.ceil((sigma_2*16)/(detectable_diff)**2)
        

Out[2]: 36663.0
        

But that formula doesn’t take into account that each city has a different variance of
the outcome (cities with more people have lower variance) nor that you can leverage
repeated observations of the same unit to increase the precision of your estimate.
Even so, 40k cities seems a lot more than the 50 cities that you have in this data. So
what can you do if you are short of units?

When considering different experimental options, it’s essential to take into account
how you will interpret the results. For example, if you plan on using the difference-
in-differences method, you can identify pairs of cities that have similar trends in the
outcome variable and randomize within each pair. One city would receive the treat‐
ment, while the other would serve as the control. However, it’s worth noting that the
diff-in-diff method estimates the average treatment effect on the treated (ATT). If you
want to know the overall effect of the treatment, such as deploying the marketing
campaign nationwide, the ATT estimate may not recover that. In this chapter, we will
explore an idea that aims to maximize the external validity of the experiment by iden‐
tifying a treatment group that is representative of the entire market.

Synthetic Control Design
Finding a group of units whose time series can best approximate the outcome of
interest is exactly what you’ve been doing with synthetic controls. So, it’s not surpris‐
ing that you can repurpose the method to find a synthetic treatment unit that approx‐
imates the average behavior of all units. To do so, you’ll only need the data in matrix
form, where the rows are the time periods and the columns are the cities, YT, n:

In [3]: df_piv = (df
                  .pivot("date", "city", "app_download"))

        df_piv.head()
        

city ananindeua aparecida_de_goiania aracaju ... teresina uberlandia vila_velha

date
2022-03-01 11.0 54.0 65.0 ... 68.0 29.0 63.0
2022-03-02 5.0 20.0 42.0 ... 17.0 29.0 11.0
2022-03-03 2.0 0.0 0.0 ... 55.0 30.0 14.0
2022-03-04 0.0 0.0 11.0 ... 49.0 35.0 0.0
2022-03-05 5.0 5.0 0.0 ... 31.0 6.0 1.0

Synthetic Control Design | 311



Now, let’s think of what you want to achieve. First, let’s keep in mind that each city
contributes differently for the average. To get the global average you first need to
know how much each city contributes to it. This can be represented by a city weight
vector � where each entry i represents the size of city i as a share of the total market:

In [4]: f = (df.groupby("city")["population"].first()
             /df.groupby("city")["population"].first().sum())
        

Once � is defined, you can see that your objective is first to find a set of weights �
such that:

�post� = �post�

Translating that to words, you want to find a combination of treatment cities that,
when combined with weights �, will give you the average outcome of the market.
Leaving it like this, the obvious solution would be to set � = �, but that would mean
treating every city, which would leave you without any control units to estimate the
treatment effect, so you have to add a constraint that the number of nonzero elements
in � must be smaller than N, the number of cities: � 0 < N ( . 0 is the L0 norm,
which is the number of nonzero elements). Moreover, the preceding objective is
impossible to solve, since you don’t observe the post-intervention values of �. Still,
let’s keep it as an ideal and see if you can somehow approximate it.

If the preceding objective finds the cities that you can use as treatment, your second
objective is to find another group of cities, different from the first, that will also
approximate the market average:

�post� = �post�

s.t wivi = 0 ∀ i,

Combining both objectives, the nonzero elements in � and � would be the treatment
and control cities, respectively. Also, this second objective introduces a constraint
which states that you can’t use the same city as a treatment and as a control. Once
again, this objective is not feasible, as it looks at the post-treatment period.

Now, you just need to think a bit on how to swap those impossible objectives with
one that you might be able to solve. The obvious first step is looking at the pre-
intervention period. This means that you would find two disjoint groups of cities
such that a weighted average of each approximates the market average. That alone
would be enough, but, practically speaking, you probably want to add some extra
constraints. For instance, since your goal is to first test a marketing campaign before
rolling it out to the entire market, you probably don’t want to choose a lot of
treatment cities. A big treatment group would treat almost everyone and kind of
defeat the purpose of the test.

312 | Chapter 10: Geo and Switchback Experiments



Moreover, in many markets, the size of cities tends to follow an exponential distribu‐
tion, with a small number of cities accounting for almost all of the market (see
Figure 10-1). If you use the canonical synthetic control formulation for this, you
would be forced to include the biggest cities, as you are not allowed to extrapolate.

Figure 10-1. There are usually few big cities and many smaller ones

As a consequence, you probably want to allow for an intercept shift in the synthetic
control model. Putting these extra requirements together, combining both objectives
and adding the synthetic control constraints, you’ll end up with the following
objective:

min
w, v

�pre� −�pre�tr − α0
2 + �pre� −�pre�co − β0

2

s.t ∑wi = 1 and ∑vi = 1,

wi, vi ≥ 0 ∀ i,

wivi = 0 ∀ i,

� 0 ≤ m

I know it seems complicated, but it really isn’t. First, it adds intercept terms, α0 and
β0, to both the synthetic treatment and synthetic control objectives. Then, it adds a
bunch of constraints. The first two rows are simply the traditional synthetic control
constraints, which states that the weights must sum up to 1 and be nonnegative. Next,
you have the constraint which states that a city cannot be used for both treatment and

Synthetic Control Design | 313



control. Finally, you have a constraint on the maximum number of cities, m, you want
on the treatment set.

Before you go running to implement this objective in cvxpy, I’m sorry to bring it to
you, but it is not convex. But don’t worry too much with it. Finding the best possible
sets of treatment and control cities is not strictly necessary. In most cases, it’s pretty
easy to find sets that are just good enough. So, in favor of simplicity, let’s see how to
code a more modest optimization.

Trying a Random Set of Treated Units
First, let’s try something incredibly simple, which is just selecting a random set of cit‐
ies. In order to do that, let’s first define some constants: �pre�, the market average
you’ll try to approximate, a list of all possible cities and m, the maximum number of
treatment cities. I’m setting this last one to 5, but that depends on your business con‐
straints. If your budget only allows for, say, three treatment cities, feel free to change
that number:

In [5]: y_avg = df_piv.dot(f)
        geos = list(df_piv.columns)
        n_tr = 5
        

Next, let’s select a random set of five cities and see how well they perform as a possi‐
ble treatment set:

In [6]: np.random.seed(1)
        rand_geos = np.random.choice(geos, n_tr, replace=False)
        rand_geos
        

Out[6]: array(['manaus', 'recife', 'sao_bernardo_do_campo', 
              'salvador', 'aracaju'], dtype='<U23')
        

These are the possible treatment cities, but you still need to find the weights for them.
If some of those weights turns out to be zero, you won’t need to use all five.

To get the weights, I’m using the SyntheticControl class that allows for an intercept
shift, which was implemented in the previous chapter. The idea is to use the synthetic
control to predict y_avg by using just these five cities:

In [7]: def get_sc(geos, df_sc, y_mean_pre):
            
            model = SyntheticControl(fit_intercept=True)
            model.fit(df_sc[geos], y_mean_pre)
            
            selected_geos = geos[np.abs(model.w_) > 1e-5]
            
            return {"geos": selected_geos, "loss": model.loss_ }

314 | Chapter 10: Geo and Switchback Experiments



        
        get_sc(rand_geos, df_piv, y_avg)
        

Out[7]: {'geos': array(['salvador', 'aracaju'], dtype='<U23'),
         'loss': 1598616.80875266}
        

Once that is done, you can inspect the estimated weights and select the cities with
weights that are not too close to zero. I’m wrapping all of that in a function that will
allow you to try many different samples and see which one performs better. It is also
worth storing the synthetic control loss, as minimizing it will be your objective.

When you fit a synthetic control model using those five cities, you can see that it
chooses only two of them as treatment. The other three can be added back to the pool
of possible cities and can compose the control group.

With that, you are ready to move to the next step, which is finding both the synthetic
treatment and synthetic control:

In [8]: def get_sc_st_combination(treatment_geos, df_sc, y_mean_pre):
            
            treatment_result = get_sc(treatment_geos, df_sc, y_mean_pre)
            
            remaining_geos = df_sc.drop(
                columns=treatment_result["geos"]
            ).columns
            
            control_result = get_sc(remaining_geos, df_sc, y_mean_pre)

            return {"st_geos": treatment_result["geos"],
                    "sc_geos": control_result["geos"],
                    "loss": treatment_result["loss"] + control_result["loss"]}

        
        resulting_geos = get_sc_st_combination(rand_geos, df_piv, y_avg)
        

First, you need to call get_sc on the random sample of cities, just like before. This
will give you the treatment cities and synthetic treatment loss. Next, you’ll figure out
what cities are not selected for the synthetic treatment units and call get_sc again,
passing the remaining cities. This second call to get_sc will give you the control cities
and the synthetic control loss. If you sum the two losses, you’ll end up with the total
loss you wish to minimize.

As expected, calling get_sc_st_combination with the same five cities will give you
the same treatment units as before:

In [9]: resulting_geos.get("st_geos")
        

Synthetic Control Design | 315



Out[9]: array(['salvador', 'aracaju'], dtype='<U23')
        

Interestingly, the sum of the treatment and control cities amount to the entire list of
50 cities. But that should not be surprising, especially when m is small:

In [10]: len(resulting_geos.get("st_geos")) + len(resulting_geos.get("sc_geos"))
         

Out[10]: 50
         

If m = 0 (no treatment units), the obvious solution would be to choose all the cities as
a control and set � = �. For m > 0, but still pretty small, selecting all the cities and
slightly adjusting the weights tends to be the optimal choice. This also means that the
majority of the total loss will come from the synthetic treatment objective, since the
synthetic control will tend to reconstruct the average market behavior pretty well
when m is small. So much so that when plotting both synthetic treatment and control
alongside the market average you can see that, while the synthetic treatment has a
poor fit, the synthetic control matches the average almost exactly:

Random Search
Let’s see how to improve upon the result you just got. Since you have a way to calcu‐
late the total loss given the number of cities, you can devise many fancy methods to
minimize that loss. But since I’m very fond of simplicity, what I suggest is just ran‐
domly searching many combinations and picking one that performs OK. The follow‐
ing code does exactly that. It first generates 1,000 sets of 5 cities and stores everything
in the geo_samples list. Then, it partially applies get_sc_st_combination to the data
and average market outcome argument. Finally, it applies that function to the 1,000
sets of cities, all of that in parallel:

316 | Chapter 10: Geo and Switchback Experiments



In [11]: from joblib import Parallel, delayed
         from toolz import partial

         np.random.seed(1)
         geo_samples = [np.random.choice(geos, n_tr, replace=False) 
                        for _ in range(1000)]

         est_combination = partial(get_sc_st_combination,
                                   df_sc=df_piv,
                                   y_mean_pre=y_avg)

         results = Parallel(n_jobs=4)(delayed(est_combination)(geos)
                                      for geos in geo_samples)
         

It’s worth mentioning that this approach is not optimal, but it does tend to produce
reasonable sets of treatment cities.

Optimization
Formulating the treatment city selection problem like you just did is a simplification
on top of the one presented in the paper “Synthetic Controls for Experimental
Design,” by Abadie and Zhao. The paper suggests using enumeration or converting
the optimization to a constrained quadratic programming problem. Both approaches
take a significant amount of time to run, which is why I recommend checking if a
simple random search isn’t enough to find good treatment cities.

I myself have also experimented with genetic algorithms for this problem and found
that they tend to achieve a better result than simple random search while using the
same number of iterations. Additionally, the paper “Designing Experiments with Syn‐
thetic Controls,” by Doudchenko et al., proposes a simulated annealing procedure to
select the best set of cities. If you find that a simple random search isn’t good enough,
I recommend you try those algorithms.

Inspecting the selected treatment cities, you can see that the model chooses only four
cities. Not surprisingly, the biggest city, Sao Paulo, is among them. This tends to hap‐
pen because the biggest cities compose a big chunk of the total market average, so
including them in the treated group tends to reduce the loss a lot. If you wish to avoid
this, you can always exclude the largest city from the possible control units:

In [12]: resulting_geos = min(results, key=lambda x: x.get("loss"))
         resulting_geos.get("st_geos")
         

Out[12]: array(['sao_paulo', 'florianopolis', 'recife', 'belem', 'sorocaba'],
               dtype='<U23')
         

Synthetic Control Design | 317



Plotting the synthetic control and treatment once more, you can see how this
approach, despite its simplicity, can give you a solution that works pretty well, with
both synthetic treatment and control tracking the market average pretty closely:

Other Experiment Objectives
The idea of minimizing the sum of the synthetic treatment and control objective is so
that you can maximize the external validity of the experiment. By selecting a treat‐
ment group that closely resembles the market average, the hope is that, with a small
experiment, you can learn what would happen if the treatment was implemented
nationwide. This is not the only possible objective, though. The paper “Designing
Experiments with Synthetic Controls,” by Doudchenko et al., focuses on maximizing
the power of the experiment by selecting a set of units with low out-of-sample error.
A subsequent paper, “Synthetic Design: An Optimization Approach to Experimental
Design with Synthetic Controls,"by Doudchenko et al., casts the treatment units selec‐
tion into a mixed-integer programming formulation to find the units that minimize
the root mean squared error of the effect estimate.

Finally, it is worth mentioning that, even though you designed an experiment using a
synthetic control design, you don’t necessarily need to read its result with synthetic
control, although that is surely a reasonable idea. For instance, you could use syn‐
thetic diff-in-diff, as that tends to reduce the variance of the estimator. You do have to
be careful on how to estimate the variance of the resulting estimator, though. Since
the group of selected cities is not random, inference procedures based on reassign‐
ment of the treatment to different units are not valid. Fortunately, the t-test you
learned in the previous chapter doesn’t make an assumption on how the units were
selected, so you can use it here.

318 | Chapter 10: Geo and Switchback Experiments



Switchback Experiment
Synthetic control experiment designs are great for when you have a small number of
units and you want to select the best set of them to compose a treatment group. How‐
ever, to do that, you still need a somewhat reasonable amount of units. But what hap‐
pens if you only have, say, four units or even one unit? To give an example, suppose
you are a small food delivery marketplace that operates within a single city. This com‐
pany uses dynamic pricing to regulate the supply and demand of the food delivery
marketplace, and it wants to know how an increase in delivery fee can impact deliv‐
ery time by attracting more drivers to the fleet while throttling or postponing cus‐
tomer demand. Notice that traditional A/B testing wouldn’t work here. Increasing the
price for 50% of the customers would also benefit those in the control group, since
the overall demand would fall, increasing the number of available drivers. Also, syn‐
thetic control experiments wouldn’t work either, because the company operates in just
one city. But there is one type of experiment design that might just do in this
situation.

If the effect of rising prices dissipates rather quickly once they go back to the normal
level, the company can turn the price increases on and off multiple times and do a
sequence of before-and-after comparisons. This approach is named switchback
experiments, and it is great for when you have just one or a very small number of
units. But for it to work, the order of the carryover effect must be small. That is, the
effect of the treatment cannot propagate to many periods after the treatment. For
instance, in the food delivery case, increasing prices tend to cause an increase in sup‐
ply shortly after; when prices are back to normal, the excess supply dissipates in a few
hours. Hence, the order of the carryover effect is small, so switchback experiments
are an interesting proposition.

Before talking about designing a switchback experiment, since this is the first time
they appear in this book, I think it’s worth walking through one for you to grasp how
they work. The following data frame contains data from a switchback experiment
with 120 periods, where each period is 1 hour. In this experiment, the treatment was
randomized at every time period, with a 50% chance of selecting the treatment or con‐
trol. The d column tells you if the price increase (treatment) was on or off at that hour
and the delivery_time is the outcome of interest. Additionally, I’ve added three col‐
umns that would not be observed in reality, but should help your understanding of
what is going on. delivery_time_1 is the delivery time you would get if the treat‐
ment was always on and delivery_time_0, if it was always off. The difference
between them, tau, is the total effect of the treatment and it is usually the causal
quantity of interest in a switchback experiment. Since the treatment decreases
delivery time, the effect is negative. Also, due to carryover, the effects on the first two
periods are smaller:

Switchback Experiment | 319



In [13]: df = pd.read_csv("./data/sb_exp_every.csv")
         df.head()
         

d delivery_time delivery_time_1 delivery_time_0 tau
0 1 2.84 2.84 5.84 -3.0
1 0 4.49 1.49 6.49 -5.0
2 0 7.27 2.27 8.27 -6.0
3 1 5.27 2.27 8.27 -6.0
4 1 5.59 4.59 10.59 -6.0

Figure 10-2 shows that the observed delivery time fluctuates between the delivery
time you would have with the treatment always on and always off. Moreover, after
three consecutive equal treatments, the observed outcome matches the one you
would have with the treatment always on or always off.

Figure 10-2. In a switchback experiment, the observed outcome fluctuates between the
always treat and never treat potential outcomes

Take T = 20 to T = 23, for example. At those points, due to chance, the treatment was
on for three or more consecutive periods and the delivery time matches the delivery
time you would have under the treatment being always on. Conversely, at around
T = 32, you can see a sequence where the treatment has been off (control) for three or
more consecutive periods. At that point, the outcome matches the outcome you
would have if the treatment was always off. If the treatment was on or off for less than
three consecutive periods, the observed outcome is somewhere in the middle. This
tells you that, in this case, the outcome depends on the treatment of three periods: the
immediate treatment and the treatment from two periods before:

Yt = f dt − 2, dt − 1, dt

320 | Chapter 10: Geo and Switchback Experiments



In other words, the order of the carryover effect is 2.

Of course, in reality, you wouldn’t know this, since you can only see the observed out‐
come. But don’t worry about that too much. I’ll show you how to estimate the size of
the carryover period. For now, I just want you to get an intuitive understanding of
switchback experiments. On top of that, you’ll be able to develop a more formal lan‐
guage to describe what is going on.

Potential Outcomes of Sequences
Since the effect of the treatment carries over to subsequent time (2 in this case), when
it comes to switchback experiments, the potential outcome has to be defined in terms
of a vector of treatments, Yt � = Yt d0, d1, d2, . . . , dT . Fortunately, you can sim‐
plify this with two assumptions. First, if you assume no anticipation of the treatment,
the potential outcome will only depend on current and past treatment, but not on
future ones. As a result, you can write Yt � = Yt d0, d1, d2, . . . , dt . If you know
the size of the carryover period m, you could write it as Yt � = Yt dt − m, . . . , dt .
Since m = 2 here, the potential outcome simplifies to Yt � = Yt dt − 2, dt − 1, dt ,
which is a lot simpler than what you would have with no assumptions at all.

Having defined those potential outcomes, you can write the total effect of the treat‐
ment as:

τm = E Yt 1t − m, . . . , 1t − Yt 0t − m, . . . , 0t

This is the effect of going from an always off treatment to an always on treatment. In
the case where m = 2, this would be E Yt 1, 1, 1 − Yt 0, 0, 0 . Since all of that simpli‐
fication requires you to know m, let’s turn your attention to that now.

Estimating the Order of Carryover Effect
Let’s say that you have some business expert knowledge that puts an upper bound on
m. For instance, you know that the effect of price increases doesn’t last for more than
6 hours. In that case, you can regression-estimate the model:

yt = α + dt + dt − 1, . . . , dt − K + et

and read the parameter estimates’ size and significance. The order of the carryover
effect will depend on which parameters are statistically significant and also have a
large impact on the outcome.

Notice that this imposes another assumption, which is that the effects of the lags are
additive:

Switchback Experiment | 321



Yt = f dt, dt − 1, dt − 2 = α + dt + dt − 1 + dt − 2 + et

To create lags of the treatment, you can use the .shift(lag) method from pandas.
To programmatically create six lags, I’m taking advantage of the fact that
the .assign(...) method takes as argument the name of the new column you want
to create and that, in Python, you can pass named argument with ** and a dictionary.
So, for instance, df.assign(a=1, b=1) is the same as df.assign(**{"a":1, "b":
2}):

In [14]: df_lags = df.assign(**{
             f"d_l{l}" : df["d"].shift(l) for l in range(7)
         })

         df_lags[[f"d_l{l}" for l in range(7)]].head()
         

d_l0 d_l1 d_l2 ... d_l4 d_l5 d_l6
0 1 NaN NaN ... NaN NaN NaN
1 0 1.0 NaN ... NaN NaN NaN
2 0 0.0 1.0 ... NaN NaN NaN
3 1 0.0 0.0 ... NaN NaN NaN
4 1 1.0 0.0 ... 1.0 NaN NaN

Once you have the data with its lags, all you have to do is regress the outcome on the
lags and the current treatment (which can be thought of as lag 0). Notice that stats‐
models will drop the rows with NaNs:

In [15]: import statsmodels.formula.api as smf

         model = smf.ols("delivery_time ~" + "+".join([f"d_l{l}"
                                                       for l in range(7)]),
                         data=df_lags).fit()

         model.summary().tables[1]
         

322 | Chapter 10: Geo and Switchback Experiments



coef std err t P>|t| [0.025 0.975]
Intercept 9.3270 0.461 20.246 0.000 8.414 10.240
d_l0 -2.9645 0.335 -8.843 0.000 -3.629 -2.300
d_l1 -1.8861 0.339 -5.560 0.000 -2.559 -1.213
d_l2 -1.0013 0.340 -2.943 0.004 -1.676 -0.327
d_l3 0.2594 0.341 0.762 0.448 -0.416 0.935
d_l4 0.1431 0.340 0.421 0.675 -0.531 0.817
d_l5 0.1388 0.340 0.408 0.684 -0.536 0.813
d_l6 0.5588 0.336 1.662 0.099 -0.108 1.225

By looking at the lag parameters, you can see that they are significant up to lag 2,
which indicates a carryover effect of 2. Interestingly, with the regression model, you
don’t need to know the correct order of the carryover effect m to estimate the total
effect τm. As long as your regression contains more lags than the correct m, you can
just sum up all the lag parameter estimates:

τ m = ∑
l = 0

lags
dt − l .

To get the variance, you also have to sum up the variance of each individual lag:

In [16]: ## remember to remove the intercept
         tau_m_hat = model.params[1:].sum() 
         se_tau_m_hat = np.sqrt((model.bse[1:]**2).sum()) 
         print("tau_m:", tau_m_hat)
         print("95% CI:", [tau_m_hat -1.96*se_tau_m_hat,
                           tau_m_hat +1.96*se_tau_m_hat])
         

Out[16]: tau_m: -4.751686115272022
         95% CI: [-6.5087183781545574, -2.9946538523894857]
         

Since you are using a bunch of lags, the total effect estimate will be rather imprecise.
But if you settle for two lags, you can reduce the variance substantially:

In [17]: ## selecting lags 0, 1 and 2
         tau_m_hat = model.params[1:4].sum() 
         se_tau_m_hat = np.sqrt((model.bse[1:4]**2).sum()) 
         print("tau_m:", tau_m_hat)
         print("95% CI:", [tau_m_hat -1.96*se_tau_m_hat,
                           tau_m_hat +1.96*se_tau_m_hat])
         

Out[17]: tau_m: -5.8518568954422925
         95% CI: [-7.000105171362163, -4.703608619522422]
         

Switchback Experiment | 323



Design-Based Estimation
The previous procedure depends on a correct specification of the model for the
potential outcome Yt � . Since it’s a time series, this is not a trivial task. One alterna‐
tive is to estimate τm with something like inverse propensity weighting (IPW), which
would only require knowledge of how the treatment was assigned. Since that is con‐
trolled by the company designing the experiment, this second approach relies on
more plausible assumptions. It will only require you to know the carryover effect
order, m.

Remember that IPW reconstructs a potential outcome by scaling up the observed
outcome by the inverse treatment probability E Yd = N−1∑ Yd� D = d /P D = d .
You’ll do the same thing, but now you have to take into account that the potential
outcome is defined in terms of a vector of treatment. For instance, in the case that the
effect carries over for two periods, m = 2, you want to reconstruct Yt 0, 0, 0  and
Yt 1, 1, 1 , which requires you to calculate the running probability of observing three
equal treatments in a row. For m = 2, that would be P dt − 2 = d, dt − 1 = d, dt = d , or,
more generally:

P �� −�: � = � ,

where �� −�: � is the vector of the current and last m treatments and � is a vector of
constant treatment d. Here, you can focus on the case where the randomization prob‐
ability p is always 50%. That is, at each randomization point, the treatment has a 50%
chance of staying the same or switching. In terms of experiment design, this will
increase the power of the experiment, as it increases the treatment variance. From an
estimation procedure, it makes it so that P �� −�: � = 1 = P �� −�: � = 0 . However,
this does not mean that P �� −�: � = �  will be the same everywhere. In fact that
probability depends on the randomization points and where you are on the sequence.
In your food delivery example, p = 50 % and the treatment was randomized at every
time period. So, the running probability of observing three consecutive treatments,
like in the sequence [1,1,1,1,1,1], is [na,na,.5^3,.5^3,.5^3,.5^3]. However, if
you randomize every three periods, the same sequence has a running probability of
[na,na,.5, .5^2,.5^2,.5]. That’s because, at t = 4, 5 the lag 2 window, which con‐
tains the current time period and the previous two, will contain two randomization
points.

I hope that is easy to conceptualize, but, unfortunately, it is not as easy to code. I’ll do
my best to explain how it’s done, but it does require some clever array manipulation.
But maybe this will teach you some new NumPy tricks. To make things more tangi‐
ble, let’s try to compute the running probability of observing m + 1 equal consecutive
treatments in the case where the randomization happens every three periods:

324 | Chapter 10: Geo and Switchback Experiments



In [18]: rad_points_3 = np.array([True, False, False]*(2))
         rad_points_3
         

Out[18]: array([ True, False, False,  True, False, False])
         

The first step is identifying the randomization windows from the randomization
points. You can take advantage of the fact that True is interpreted as 1 and False, as 0.
If you compute the cumulative sum of the randomization points, the sum will
increase by 1 at each randomization point:

In [19]: rad_points_3.cumsum()
         

Out[19]: array([1, 1, 1, 2, 2, 2])
         

Now, you can view each randomization window as the sequence of equal integer
numbers. You have two randomization windows of size 3 each.

The next step is to compute the carryover window, which will be of size m + 1. Notice
that, in this case, the randomization window is equal to the carryover window, but
this is not generally the case, so the code has to work for different ms. One way to do
that is to use the function sliding_window_view, from NumPy, which, as the name
suggests, creates a running window array. Notice that this function discards the first
m windows, as they would not be complete:

In [20]: from numpy.lib.stride_tricks import sliding_window_view

         m = 2
         sliding_window_view(rad_points_3.cumsum(), window_shape=m+1)
         

Out[20]: array([[1, 1, 1],
                [1, 1, 2],
                [1, 2, 2],
                [2, 2, 2]])
         

From these windows, you can calculate how many randomization windows are con‐
tained in each carryover window. It is simply the quantity of different numbers in
each carryover window. Unfortunately, there isn’t a NumPy function that counts the
unique elements across an axis, so you’ll have to build one on your own. To do that,
you can use the function np.diff, which counts the difference of subsequent entries
in an array:

In [21]: np.diff(sliding_window_view(rad_points_3.cumsum(), 3), axis=1)
         

Out[21]: array([[0, 0],
                [0, 1],

Switchback Experiment | 325



                [1, 0],
                [0, 0]])
         

Then, finally, summing up the columns and adding 1 returns the number of random‐
ization windows at each point of the original array. Notice that the result starts at
index 2 (T = 3), since sliding_window_view discards the first m windows. In this
example, at T = 3, the last three entries contain a single randomization window, at
time T = 4, it contains two randomization windows, and so on. To avoid any confu‐
sion, you can prepend m np.nan at the beginning of the array:

In [22]: n_rand_windows = np.concatenate([
             [np.nan]*m,
             np.diff(sliding_window_view(rad_points_3.cumsum(), 3),
                     axis=1).sum(axis=1)+1
         ])

         n_rand_windows
         

Out[22]: array([nan, nan,  1.,  2.,  2.,  1.])
         

Now, to get the probability vector, all you have to do is take the probability of the
experiment, in this case, 0.5, and exponentiate it by the preceding array:

In [23]: p=0.5
         p**n_rand_windows
         

Out[23]: array([ nan, nan, 0.5, 0.25, 0.25, 0.5 ])
         

Here is everything wrapped up in a function. You can also check that this logic works
for other randomization frequencies, like randomizing every period:

In [24]: def compute_p(rand_points, m, p=0.5):
             n_windows_last_m = np.concatenate([
                 [np.nan]*m,
                 np.diff(sliding_window_view(rand_points.cumsum(), m+1),
                         axis=1).sum(axis=1)+1
             ])
             return p**n_windows_last_m

         compute_p(np.ones(6)==1, 2, 0.5)
         

Out[24]: array([  nan, nan, 0.125, 0.125, 0.125, 0.125])
         

and even for nonregular randomization intervals:

326 | Chapter 10: Geo and Switchback Experiments



In [25]: rand_points = np.array([True, False, False, True, False, True, False])
         compute_p(rand_points, 2, 0.5)
         

Out[25]: array([ nan, nan, 0.5, 0.25, 0.25, 0.25, 0.25])
         

But all of that was just to compute P �� −�: � = � . You still have to take a look at the
rest of the estimator for the potential outcome:

Y � = 1
T − m ∑

t = m + 1

T
Yt
� �� −�: � = �
P �� −�: � = �

In other words, this estimator will scale up the observed outcome by the running
probability you just learned how to compute, whenever the last m treatment and the
current one are all the same. Then, it will average those scaled-up outcomes.

To code this, the only missing piece is the indicator function in the numerator, which
evaluates to true whenever the last m + 1 treatments are equal to d. Fortunately, now
that you know about sliding_window_view, that is pretty easy to do. First, create the
m + 1 window view of the treatment array. Then, check if all the elements in that win‐
dow are equal to the treatment. Here is a function to do just that:

In [26]: def last_m_d_equal(d_vec, d, m):
             return np.concatenate([
                 [np.nan]*m,
                 (sliding_window_view(d_vec, m+1)==d).all(axis=1)
             ])

         print(last_m_d_equal([1, 1, 1, 0, 0, 0], 1, m=2))
         print(last_m_d_equal([1, 1, 1, 0, 0, 0], 0, m=2))
         

Out[26]: [nan nan  1.  0.  0.  0.]
         [nan nan  0.  0.  0.  1.]
         

Applying this function to the treatment vector [1,1,1,0,0,0], using m = 2 and try‐
ing to find when the current and last two entries are treated (d = 1) returns a 1 only at
the third entry, as it should be.

You are finally ready to join all those pieces into the IPW estimator for switchback
experiments:

τ = 1
T − m ∑

t = m + 1

T
Yt
� �� −�: � = 1
P �� −�: � = 1 −

� �� −�: � = 0
P �� −�: � = 0

Switchback Experiment | 327



In [27]: def ipw_switchback(d, y, rand_points, m, p=0.5):
             
             p_last_m_equal_1 = compute_p(rand_points, m=m, p=p)
             p_last_m_equal_0 = compute_p(rand_points, m=m, p=1-p)
             
             last_m_is_1 = last_m_d_equal(d,1,m)
             last_m_is_0 = last_m_d_equal(d,0,m)
           
             y1_rec = y*last_m_is_1/p_last_m_equal_1
             y0_rec = y*last_m_is_0/p_last_m_equal_0
             
             return np.mean((y1_rec-y0_rec)[m:])
         

Let’s now use this function to estimate τ from the price increase switchback experi‐
ment. Remember that the treatment was randomized at each time period, so you can
pass a vector of Trues, np.ones(len(df))==1, to the rand_points arguments:

In [28]: ipw_switchback(df["d"],
                        df["delivery_time"],
                        np.ones(len(df))==1,
                        m=2, p=0.5)
         

Out[28]: -7.426440677966101
         

This estimated effect is a bit lower (meaning that prices decrease waiting time more)
than the one you got with OLS. Also, it is worth mentioning that it has a much higher
variance. In the following plot, I’ve simulated 500 switchback experiments just like
the one you have and computed both the OLS and IPW estimates for the total effect.
As you can see, both methods are unbiased, since the average of the estimated τ
matches τ in both cases. However, the IPW distribution is much more spread out:

Optimal Switchback Design
I think we can all agree that more variance is undesirable from an estimation stand‐
point. However, if you plan to design a switchback experiment, you probably want to

328 | Chapter 10: Geo and Switchback Experiments



be conservative and look at the worst possible case. Also, you likely want to make the
least amount of assumptions possible. For this reason, taking the IPW estimator and
trying to come up with an experiment design that will reduce its variance is an attrac‐
tive proposition. First, let’s think on an intuitive level how you might go about doing
that.

From the IPW estimator formula, you know that it only keeps the sequences with
m + 1 consecutive equal treatments. This means it throws away any m + 1 sequence
that has more than one treatment assignment. If you go back to the plot that shows
the observed and potential outcomes of your experiment, it would mean throwing
away all the data in between the upper and lower potential outcomes. Hence, if you
want to use more data, all you have to do is make sure you have more consecutive
equal treatments. At the limit, you would just set all the treatment sequences to either
0 or 1. This would maximize the usable data; however, it would decrease the variance
of the treatment—and, in this extreme case, make estimation impossible. Since the
variance of the estimator can be decreased by having both more useful data and
higher treatment variance, you have to find a balance between the two.

Intuitively speaking, one way to do that is by randomizing every m + 1 period. So, in
your example, if the order of the carryover effect is 2, you would randomize every
three periods. This is indeed very close to the design that minimized variance, but it
is not exactly it. Turns out you can improve it slightly if you instead randomize at
every m periods and add a gap of size m at the beginning and end of the experiment
horizon, when m > 0:

�* = 1, 2m + 1, 3m + 1, . . . , n − 2 m + 1 ,

where �* are the optimal randomization points, m is the order of the carryover effect,
and n is an integer ≥ 4 such that T /m = n. In practice, this means that the length of
the experiment has to be divisible by the carryover order and long enough to contain
at least four blocks of size m.

When there is no carryover, (m = 0), the optimal design is just ran‐
domizing at every period, which would maximize treatment var‐
iance while keeping all the data.

To consolidate your understanding about this, let’s look at some examples. First, if
T = 12 and m = 2, you would randomize at t = 1, leave a gap of size 2 at t = 3 then
randomize again at t = 5, 7, 9, and leave a final gap of size 2 at t = 11:

In [29]: m = 2
         T = 12
         n = T/m

Switchback Experiment | 329



         np.isin(
             np.arange(1, T+1),
             [1] + [i*m+1 for i in range(2, int(n)-1)]
         )*1
         

Out[29]: array([1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0])
         

When m = 3 and T = 15, you again randomize at t = 1, then leave a gap of size 3 at
t = 4, randomize again at t = 7, 10, and leave a final gap of size 3 at t = 13:

In [30]: m = 3
         T = 15
         n = T/m
         np.isin(
             np.arange(1, T+1),
             [1] + [i*m+1 for i in range(2, int(n)-1)]
         )*1
         

Out[30]: array([1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0])
         

Now, as interesting as this is, it is worth mentioning that the variance decrease you’ll
probably get with this optimal design is nowhere as near as the one you would get by
making a model assumption and using OLS. In the following plots, I’ve simulated 500
experiments with T = 120 and m = 2 using the optimal design, the intuitive design
(randomizing every three periods), and randomizing every period. Then, I used the
IPW estimator to estimate the effect in all of them. As you can see, there is a variance
reduction, but it’s nothing dramatic:

Still, since the optimal design is rather simple to implement, I don’t see any reason
not to.

330 | Chapter 10: Geo and Switchback Experiments



Robust Variance
We talked a lot about reducing variance, but I haven’t yet told you how to estimate the
variance of the IPW estimator. That’s because it actually depends on the design of
your experiment. Now that we’ve set on an optimal design, you can compute the var‐
iance that it entails. So, for the sake of the example, let’s say that the food delivery
company ran a second experiment, a lot like the first one, with T = 120, p = 0.5, but
now they decided the randomization points based on the optimal design. The data
from that experiment is stored in the following data frame:

In [31]: df_opt = pd.read_csv("./data/sb_exp_opt.csv")
         df_opt.head(6)
         

rand_points d delivery_time
0 True 0 5.84
1 False 0 5.40
2 False 0 8.86
3 False 0 8.79
4 True 0 10.93
5 False 0 7.02

The IPW function from before is pretty general, so you can use it here to estimate the
treatment effect:

In [32]: tau_hat = ipw_switchback(df_opt["d"],
                                  df_opt["delivery_time"],
                                  df_opt["rand_points"],
                                  m=2, p=0.5)

         tau_hat
         

Out[32]: -9.921016949152545
         

Now, for the variance. The formula is a bit ugly, but you’ll see it’s not that compli‐
cated, once I parse it for you. First, let’s partition your data into K = T /m blocks such
that each block has size m. Then, define the sum of the outcomes of a block k as
Yk = ∑Ykm + 1: k + 1 m. For instance, if Y = 1, 1, 1, 2, 2, 3 , for m = 2, k = 1, 2 ,
Y = ∑Y3:4, ∑Y5:6 = 3, 5 . Notice that the first block is thrown away. Having
defined the sum of those blocks, a conservative estimate to the variance is as follows:

σ τ = 1
T − m 2 8Y1

2 + ∑
k = 2

K − 1
32Yk

2� dkm + 1 = d k + 1 m + 1 + 8YK
2

Switchback Experiment | 331



Now, let me parse it for you. First, the denominator is the square of the sample size.
But since you discarded the first m entries, you have to subtract m. The numerator is
composed of three main terms. The first and the last term take into account the gap
you left at the beginning and end of the optimal design. The term in the middle is a
bit more complicated, because it has this indicator function. That function evaluates
to 1 whenever two consecutive blocks have the same treatment. Notice that, because
of the gap at the beginning and end, this is sure to happen for the first and last term,
which is why you don’t need the indicator function there.

To code this formula, you’ll first need to make sure that T is divisible by m by a factor
greater or equal to 4. Then, you’ll make use of the functions hsplit and vstack. The
first will partition the array into blocks and the second will pile up the blocks verti‐
cally. Here is an example:

In [33]: np.vstack(np.hsplit(np.array([1,1,1,2,2,3]), 3))
         

Out[33]: array([[1, 1],
                [1, 2],
                [2, 3]])
         

You can then sum the columns of that piled-up array to get Y.

For the indicator function, you’ll do the same thing, but with the treatment vector.
Due to the nature of the experiment design, the entire block of treatment will be
either 1 or 0, so you can take just the first column to know which treatment was
assigned to that block. To know if two consecutive blocks have the same treatment,
use the diff function. This will discard yet another block. Here is an example:

In [34]: np.diff(np.vstack(np.hsplit(np.array([1,1,0,0,0,0]), 3))[:, 0]) == 0
         

Out[34]: array([False,  True])
         

Now, for the entire variance function:

In [35]: def var_opt_design(d_opt, y_opt, T, m):
             
             assert ((T//m == T/m)
                     & (T//m >= 4)), "T must be divisible by m and T/m >= 4"
             
             # discard 1st block
             y_m_blocks = np.vstack(np.hsplit(y_opt, int(T/m))).sum(axis=1)[1:]
             
             # take 1st column
             d_m_blocks = np.vstack(np.split(d_opt, int(T/m))[1:])[:, 0] 
             
             return (
                 8*y_m_blocks[0]**2 

332 | Chapter 10: Geo and Switchback Experiments



                 + (32*y_m_blocks[1:-1]**2*(np.diff(d_m_blocks)==0)[:-1]).sum()
                 + 8*y_m_blocks[-1]**2 
             ) / (T-m)**2
         

Finally, with that function, you can estimate the variance and place a confidence
interval around your effect estimate:

In [36]: se_hat = np.sqrt(var_opt_design(df_opt["d"],
                                         df_opt["delivery_time"],
                                         T=120, m=2))

         [tau_hat - 1.96*se_hat, tau_hat + 1.96*se_hat]
         

Out[36]: [-18.490627362048095, -1.351406536256997]
         

That is a pretty wide confidence interval—a lot wider than the earlier one, with OLS
and the design that randomized every period. Still, sometimes this extra variance is a
price worth paying, if you don’t want to make further model assumptions. Moreover,
even if you follow the optimized design, you can still analyze it with OLS. Even
though this optimal design is not meant to minimize the OLS variance, I find that it
still gives more precise estimates than randomizing at every period, for instance.

Finding M with Fewer Assumptions
The optimal switchback experiment design, the IPW estimator and the variance esti‐
mator presented in this chapter was taken from the paper “Design and Analysis of
Switchback Experiments,” by Bojinov, Simchi-Levi, and Zhao (yes, it’s the same Zhao
from the synthetic control design paper). That paper contains a more generic formula
for the optimal design, which works when T is not divisible by m. Since that formula
is a lot more complex and a company can easily make it so that T is divisible by m, I
chose to omit it here.

Moreover, the paper proposes another procedure to find the order of the carryover
effect m. The idea is based on running two optimal experiments, e1 and e2, each one
with a candidate value for m, m1, and m2. Say that m1 < m2. If the effect estimates
from both experiments are the same, you cannot reject the hypothesis H0:m ≤ m1.
That’s because, if m > m1, e1 would return a more biased estimate for the effect than
e2. Hence, you can search for m based on rejecting the hypothesis that the effect esti‐
mates from two experiments are the same, H0:τ1 = τ2.

Honestly, I’m not sure I like that procedure. The high variance will make it very hard
to reject that null hypothesis, unless the experiment is incredibly long (very high T).
Still, that is an alternative to the OLS method I showed you, in case you don’t want to
make any model-based assumptions.

Switchback Experiment | 333



Key Ideas
This chapter looks at two alternative experiment designs for when the number of
experimental units at your disposal is rather short. This can happen, for example,
when you are forced to zoom out from treating customers to treating entire cities, as
it is often the case in both online and offline marketing.

First, you learned about synthetic control design. Here, the goal is to find a small set
of units which, when combined together, approximate the average behavior of all
units. This can be done by maximizing the following objective:

min
w, v

�pre� −�pre�tr − α0
2 + �pre� −�pre�co − β0

2

s.t ∑wi = 1 and ∑vi = 1,

wi, vi ≥ 0 ∀ i,

wivi = 0 ∀ i,

� 0 ≤ m

where � corresponds to the weight each unit contributes to the global average, � and
� are the weights of the synthetic treatment and control units, and m is is a constraint
on the maximum number of treatment units.

Synthetic control designs are great for when you have a relatively small number of
experimental units, as it allows you to treat just the ones that are good at reproducing
the average. Moreover, synthetic control design is well suited for when the order of
the carryover effect is large, meaning that the treatment effect takes a long time to
dissipate.

If that is not the case—that is, the order of carryover effect is small—then switchback
experiments tend to offer a good alternative. Even if you have very few or only one
experimentation unit, switchback experiments work by turning the treatment on and
off for the same unit and then doing a bunch of before-and-after comparisons.

A switchback experiment is defined by the probability of treatment—which, if you
want to maximize power, should be set to 50%—and the randomization points, or
time periods when randomization happens. If you know the order of the carryover
effect, m, and it is greater than 0, then the optimal design randomizes every m + 1
time periods:

�* = 1, 2m + 1, 3m + 1, . . . , n − 2 m + 1 ,

334 | Chapter 10: Geo and Switchback Experiments



where n = T /m. For this to work, the length of the experiment T has to be divisible
by m by more than 4. Also, if there is no carryover effect (m = 0), the optimal design
is one that simply randomizes at each time period.

Key Ideas | 335





CHAPTER 11

Noncompliance and Instruments

It’s not uncommon for companies to offer products or services to their existing cus‐
tomer base. For instance, a retailer can offer a subscription-based program where
customers get free shipping. A streaming company can offer an ad-free version of its
services for an additional fee. Or a bank can offer a prime credit card with lots of
perks for customers who spend above a certain threshold.

In all of these examples, the customer must opt in for the additional service, which
makes inferring its impact challenging. As the choice to participate lies with the cus‐
tomer, that choice often confounds the impact evaluation of the service; after all, cus‐
tomers who opt in and customers who don’t will likely have different Y0. Even if the
company randomizes the availability of the service or product, it can’t force customers
to take it. This is called noncompliance, where not everyone that gets assigned to the
treatment takes it. This chapter will walk you through how to think about this issue
and what to consider when you want to design an experiment that suffers from non‐
compliance.

Noncompliance
Noncompliance comes from pharmaceutical science (although some of the tooling to
deal with it comes from economics). Imagine you are conducting an experiment to
test the effect of a new drug on some illness. Each subject gets assigned to a treat‐
ment: a drug or a placebo. But those subjects are imperfect human beings, who some‐
times forget to take their medicine. As a result, not everyone assigned to the
treatment gets it. Also, someone critically ill might figure out they were assigned the
placebo and manage to find a way to get the treatment regardless. That is to say, if you
separate the treatment assignment from the treatment intake, you’ll end up with four
groups:

337



Compliers
Those who take the treatment that was assigned to them

Always takers
Those who always take the treatment, regardless of the assignment

Never takers
Those who never take the treatment, regardless of the assignment

Defiers
Those who take the opposite treatment from the one assigned

The catch here is that you don’t know who belongs to each group.

You can also represent noncompliance in a DAG (see Figure 11-1), where Z is the
treatment assignment (random in this case), T is the treatment, Y is the outcome, and
U is hidden factors that confound the treatment choice and the outcome. Z is what is
called an instrument: a variable that (1) impacts the treatment in a nonconfounded
way and (2) doesn’t impact the outcome, unless through the treatment.

Figure 11-1. The canonical instrumental variable DAG

Since the compliance group and the treatment assignment deterministically cause the
treatment intake, you can also think of U as unknown factors that cause the compli‐
ance group. As you can see from the DAG in Figure 11-1, without further assump‐
tions, you can’t identify the effect of the treatment on Y due to an open backdoor path
through U. As you’ll soon see, identification of that effect will involve clever usage
of Z.

To make things more concrete, let’s work with a typical industry setting where a bank
wants to know the impact of offering a prime credit card to its customers. Since this
prime service is costly, the bank charges a small fee, which is not enough to cover all
its costs. But, if the purchase volume—the total amount spent on the card—of those
prime customers increases by at least 500 USD, then it is worth it. Hence, the bank
wants to know how much the prime card increases customers’ purchase volume.

The bank managed to run an experiment where it randomized the availability of the
prime credit card (prime_eligible) to 10,000 customers, with each customer having
a 50% chance of being eligible and 50% of being in the control. Of course, the bank
can’t force customers to choose the card, making this an experiment with non-
compliance.

338 | Chapter 11: Noncompliance and Instruments



If you map these variables to Figure 11-1, purchase volume would be Y, availability of
the prime credit card would be Z, and having the prime card would be T. All this
information is stored in the following data frame. The bank also has information on
the customer’s age, income, and credit score, but let’s not worry about those variables
for now. Additionally, I’ve added information on the true effect of the prime card on
PV, τ (tau), and which group a customer belongs to. Keep in mind that the compli‐
ance category and τ are not available to you in real life. I’ll only use them here to
make some examples easier to understand:

In [1]: import pandas as pd
        import numpy as np

        df = pd.read_csv("./data/prime_card.csv")

        df.head()
        

age income credit_score prime_eligible prime_card pv tau categ
0 37.7 9687.0 822.0 0 0 4913.79 700.0 complier
1 46.0 13731.0 190.0 0 0 5637.66 200.0 never-taker
2 43.1 2839.0 214.0 1 1 2410.45 700.0 complier
3 36.0 1206.0 318.0 1 1 1363.06 700.0 complier
4 39.7 4095.0 430.0 0 0 2189.80 700.0 complier

Extending Potential Outcomes
To be more precise with noncompliance and to proceed with identification, you’ll
have to extend the potential outcome notation. Since Z causes T, you can now define
a potential treatment Tz. Also, the potential outcome has new counterfactuals with
respect to the instrument Z, Yz, t.

In the prime credit card example, Z is randomized, which means that the effect of Z
on Y—also called the intention-to-treat effect (ITTE)—is pretty easy to identify:

ITTE = E Y Z = 1 − E Y Z = 0 = E Y1, t − Y0, t ,

which you can estimate with a simple linear regression:

In [2]: m = smf.ols("pv~prime_eligible", data=df).fit()
        m.summary().tables[1]
        

coef std err t P>|t| [0.025 0.975]
Intercept 2498.3618 24.327 102.701 0.000 2450.677 2546.047
prime_eligible 321.3880 34.321 9.364 0.000 254.113 388.663

Extending Potential Outcomes | 339



The ITTE is a valuable metric in its own right as it measures the impact of assigning a
treatment, such as offering the prime credit card in this scenario. For the bank, this
number indicates the additional purchase volume (PV) per customer it can expect by
having the prime credit card available as part of its product suite. However, it’s crucial
to note that the ITTE is not the same as the treatment effect. The bank’s primary
objective is to determine whether the benefits of the prime card outweigh its costs.
Therefore, the bank needs to identify the treatment effect of choosing the card, rather
than solely relying on the ITTE.

In this particular example, the bank has full control on who has the prime card avail‐
able. As a result, you have one-sided noncompliance, since there is no way for custom‐
ers who are not eligible for the prime card to get it, but customers who have the card
available can still choose to not have it. This forces the always takers into compliance
and the defiers into never takers, reducing the number of compliance groups from
four to two.

Now that you understand the setting, let’s think about identifying the effect of the
prime card. An obvious idea is to use the ITTE as a proxy for the card effect. Maybe
they are not so different after all. So, what is the ITTE anyway?

Due to randomization of treatment assignment, the ITTE can be obtained by com‐
paring those assigned to the treatment to those assigned in the control. But you can
quickly see that this comparison will give you a biased toward zero estimate for the
treatment effect (see Figure 11-2). That’s because some of those assigned to the treat‐
ment actually get the control, which decreases the perceived difference between the
two groups.

Figure 11-2. The ITTE is a biased toward zero estimate of the ATE, since some of the
units assigned to one treatment actually get the other treatment

To prove that, you can take advantage of those taus I’ve added to the dataset. The
average treatment effect is quite larger than the ITTE:

340 | Chapter 11: Noncompliance and Instruments



In [3]: df["tau"].mean()
        

Out[3]: 413.45
        

OK, so that turned out to be a dead end. But what about a simple average comparison
between treated and control E Y T = 1 − E Y T = 0 ? Maybe the randomization
assignment will make that a good proxy for the effect estimate you care about. Well…
let’s estimate that and see:

In [4]: m = smf.ols("pv~prime_card", data=df).fit()
        m.summary().tables[1]
        

coef std err t P>|t| [0.025 0.975]
Intercept 2534.4947 19.239 131.740 0.000 2496.783 2572.206
prime_card 588.1388 41.676 14.112 0.000 506.446 669.831

Now the measured effect is much larger than the true effect (see Figure 11-3). The
reason is that, in this example the bias is upward, E Y0 T = 1 > E Y0 T = 0 , mean‐
ing that customers who choose the prime card spend more regardless of the prime
card. In other words, the never takers have lower Y0 than the compliers, which artifi‐
cially lowers the average outcome of the untreated group.

Figure 11-3. Under noncompliance, comparing treated and untreated will not recover
the ATE, since treatment choice is not random

Extending Potential Outcomes | 341



It seems that you are a bit stuck here. The ATE can’t be identified and ITTE is a
biased measure for it. As with much in causal inference, in order to make some pro‐
gress, you’ll need to make additional assumptions.

Instrument Identification Assumptions
Let’s take the DAG I showed you earlier and reproduce it here for better readability.
As you’ll see, the first few assumptions you’ll need for identification are already spel‐
led out in that DAG:

Here they are:

1. The first assumption you need is independence; the lack of unmeasured con‐
founders between Z and T, Tz ⊥ Z X, and between Z and Y, Y Z, Tz ⊥ Z X.
This assumption states that the instrument is as good as randomly assigned. This
assumption is not testable, but it can be made more plausible by the experiment
design. In your example, you can probably say this assumption is satisfied, since
the bank randomized the availability of the prime card.

2. The second assumption is the exclusion restriction, Yz, t = Yt, which is the lack of
a path from Z to Y that does not go through the treatment T. In words, it says
that the instrument only affects the outcome through the treatment. This one is
more tricky. Even if Z is randomized, it could impact the outcome through other
channels. For example, let’s say that customers figured out which group they were
assigned to and those in the control got very mad at the bank and decided to
close their accounts. In this case, randomization affects the outcome through a
channel that is not the treatment.

3. The third assumption is relevance, E T1 − T0 ≠ 0, which is the existence of an
arrow from Z to T. This assumption states that the instrument must have an
influence on the treatment. Fortunately, this assumption is testable, since you can
estimate the effect of the instrument on the treatment.

4. The fourth and final assumption is not stated in the DAG. It is mostly a func‐
tional from assumption imposed on the causal model: monotonicity, Ti1 ≥ Ti0 (or
vice versa). It might look confusing, but it simply states that the instrument flips
the treatment in only one direction. It either increases the chance of getting the
treatment for everyone who got the instrument, which is equivalent to assuming
that there are no defiers; or it decreases that chance, which is equivalent to

342 | Chapter 11: Noncompliance and Instruments



assuming that there are no compliers. In your example, this is also a plausible
assumption, as customers in the control group can’t force their way into getting
the prime credit card. As a result, the defiers are collapsed into the never takers.

Now, let’s see how to use those assumptions for identification. The goal here is to start
with the ITTE and see if we can get something like an average treatment effect. First,
let’s expand the outcome into the potential outcomes. Recall that you can do this
using the treatment as a switch—Y = Y1T + Y0 1 − T :

E Y Z = 1 − E Y Z = 0 = E Y1, 1T1 + Y1, 0 1 − T1 Z = 1

−E Y0, 1T0 + Y0, 0 1 − T0 Z = 0

Now, because of the exclusion restriction, you can remove the instrument subscript of
Yz, t:

E Y1T1 + Y0 1 − T1 Z = 1 − E Y1T0 + Y0 1 − T0 Z = 0

Next, using the independence assumption, you can merge both expectations:

E Y1T1 + Y0 1 − T1 − Y1T0 − Y0 1 − T0

which you can simplify to

E Y1 − Y0 T1 − T0 .

Next, let’s use the monotonicity assumption and expand this expectation into the pos‐
sible cases, T1 > T0 and T1 = T0:

E Y1 − Y0 T1 − T0 T1 > T0 * P T1 > T0

+ E Y1 − Y0 T1 − T0 T1 = T0 * P T1 = T0

And since T1 − T0 would be 0 if T1 = T0, you are left with only the first term. Since Z
is binary, T1 − T0 = 1 and:

E Y Z = 1 − E Y Z = 0 = E Y1 − Y0 T1 > T0 * P T1 > T0 .

This is a good time to pause and see what you’ve accomplished. First, notice that
T1 > T0 are the compliers, the population where the instrument shifts the treatment

Instrument Identification Assumptions | 343



from 0 to 1. This means that this last equation tells you that the effect of the instru‐
ment on the outcome is the treatment effect of the compliers times the compliance rate.
This explains why the ITTE is a biased-toward-zero estimate for this effect: you are
multiplying it by a rate, which is between 0 and 1. If you could only estimate
P T1 > T0 , then you would be able to correct the previous estimator…

But wait a second! Since the instrument is randomized, you can estimate its impact
on the treatment, E T1 − T0 . And since T1 − T0 = 1 for the compliers and 0 other‐
wise (due to the monotonicity assumption), this effect is the compliance rate:

E T1 − T0 = P T1 > T0

Putting it all together, this means that you can identify the average treatment effect on
the compliers by scaling up the effect of the instrument on the outcome by the compli‐
ance rate, which is the effect of the instrument on the treatment:

E Y1 − Y0 T1 > T0 = E Y Z = 1 − E Y Z = 0
E T Z = 1 − E T Z = 0

This is how you can use instruments to identify the effect in noncompliance settings.
The good news is that you can identify that effect. The bad news is that it is not the
ATE, but only the effect on the compliers, which is usually called the local average
treatment effect (LATE). Unfortunately, you can’t identify the ATE. But this might not
be a problem. In your credit card example, the LATE would be the effect on those
who choose the prime card when it is available to them. Now, the bank wants to know
if the effect in terms of extra PV compensate for the cost of the prime card, both of
which only occur for those who choose the prime card. In this situation, it’s enough
to know the LATE. The bank doesn’t care about the effect of those who will never opt
in for the prime card.

Having gone through the theory about instrument identification, it is now time to
check how to apply it in practice.

First Stage
The first step in instrumental variables analysis is to run what is conveniently called a
first stage regression, where you regress the treatment on the instrument. During this
step, you can check the relevance assumption—if the parameter estimate associated
with the instrument is large and statistically significant, you have good reason to
believe that assumption holds:

In [5]: first_stage = smf.ols("prime_card ~ prime_eligible", data=df).fit()
        first_stage.summary().tables[1]
        

344 | Chapter 11: Noncompliance and Instruments



coef std err t P>|t| [0.025 0.975]
Intercept 6.729e–15 0.005 1.35e–12 1.000 –0.010 0.010
prime_eligible 0.4242 0.007 60.536 0.000 0.410 0.438

In this example, the compliance rate is estimated to be about 42%, which is also statis‐
tically significant (the 95% CI is [0.410, 0.438]). Since I’ve included the true group to
which each customer belongs, you can even check if that is indeed the actual compli‐
ance rate:

In [6]: df.groupby("categ").size()/len(df)
        

Out[6]: categ
        complier       0.4269
        never-taker    0.5731
        dtype: float64
        

Reduced Form
The second step is called the reduced form. At this stage, you regress the outcome on
the instrument to obtain the intention to treat the effect:

In [7]: red_form = smf.ols("pv ~ prime_eligible", data=df).fit()
        red_form.summary().tables[1]
        

coef std err t P>|t| [0.025 0.975]
Intercept 2498.3618 24.327 102.701 0.000 2450.677 2546.047
prime_eligible 321.3880 34.321 9.364 0.000 254.113 388.663

Once you’ve run the first stage and the reduced form, you can divide the parameter
estimate from the first by the parameter estimate on the latter to obtain the estimate
for the local average treatment effect:

In [8]: late = (red_form.params["prime_eligible"] /
                first_stage.params["prime_eligible"])
        late
        

Out[8]: 757.6973795343938
        

As you can see, this effect is more than twice the ITTE. This is expected, since the
compliance rate is lower than 50%. It is also larger than the ATE, but that is because
the compliers have a higher than average effect. In fact, if you compute the effect for
the compliers, you can see that your LATE estimate is pretty close to it:

Reduced Form | 345



In [9]: df.groupby("categ")["tau"].mean()
        

Out[9]: categ
        complier       700.0
        never-taker    200.0
        Name: tau, dtype: float64
        

There is still some difference, though. It’s hard to tell if this is right or not if you don’t
wrap that point estimate in a confidence interval. You could do that using bootstrap, 
but I think it is worth looking into the actual formula for the standard error of instru‐
mental variable (IV) estimates. To do that, you have to learn an alternate way to esti‐
mate the LATE.

Two-Stage Least Squares
If you zoom in the treatment part of the DAG, you can see that it is caused by two
components: first, there is a random component, which is the randomized instru‐
ment. Second, there is the U component, which is where the confounding bias comes
from:

Recall how the first stage is a regression of the treatment on the instrument, which
essentially means you are estimating the path Z T. But there is more to it. Since
that is what the first stage is estimating, you can think of its predicted values, T, as an
unbiased version of the treatment. Which in turn means that if you regress the out‐
come on those predicted values, you’ll get the same IV estimate as before:

In [10]: iv_regr = smf.ols(
             "pv ~ prime_card",
             data=df.assign(prime_card=first_stage.fittedvalues)).fit()

         iv_regr.summary().tables[1]
         

coef std err t P>|t| [0.025 0.975]
Intercept 2498.3618 24.327 102.701 0.000 2450.677 2546.047
prime_card 757.6974 80.914 9.364 0.000 599.091 916.304

346 | Chapter 11: Noncompliance and Instruments



This approach is called two-stage least squares (2SLS). OK, but why is it useful? First,
because it will allow you to properly compute standard errors; second, because it
makes adding more instruments and covariates as easy as adding variables in a
regression model. Let’s now talk about each of those in turn.

Standard Error
The residuals from the second stage’s prediction can be defined as follows:

eIV = Y − βIVT

Notice that this is not the same residuals you would get with the .resid method from
the second stage, since those would be Y − βIVT. The residual you want uses the raw
version of the treatment, not the predicted one.

With that residual, you can compute the standard error for the IV estimates:

SE βIV =
σ � IV

βz, 1stσ Z n
,

where σ .  stands for the standard deviation function and βz, 1st is the estimated
compliance rate, which you got from the first stage:

In [11]: Z = df["prime_eligible"]
         T = df["prime_card"]
         n = len(df)

         # not the same as iv_regr.resid!
         e_iv = df["pv"] - iv_regr.predict(df)
         compliance = np.cov(T, Z)[0, 1]/Z.var()

         se = np.std(e_iv)/(compliance*np.std(Z)*np.sqrt(n))

         print("SE IV:", se)
         print("95% CI:", [late - 2*se, late + 2*se])
         

Out[11]: SE IV: 80.52861026141942
         95% CI: [596.6401590115549, 918.7546000572327]
         

Just to double-check your results, you can use the 2SLS module from the linearmo
dels’ Python package. With it, you can wrap the first stage, as in [T~Z], inside the
model’s formula and fit an IV model. As you can see, using this package gives not

Standard Error | 347



only the same LATE estimate as the one you got earlier, but also the same standard
error as the one you’ve just calculated:

In [12]: from linearmodels import IV2SLS

         formula = 'pv ~ 1 + [prime_card ~ prime_eligible]'
         iv_model = IV2SLS.from_formula(formula, df).fit(cov_type="unadjusted")

         iv_model.summary.tables[1]
         

Parameter Std. Err. T-stat P-value Lower CI Upper CI
Intercept 2498.4 24.211 103.19 0.0000 2450.9 2545.8
prime_card 757.70 80.529 9.4090 0.0000 599.86 915.53

Regardless of the method you use, you can see that this is a pretty huge confidence
interval, even if it does contain the true ATE for the compliers, which is 700. More
importantly, I think that the standard error formula can shed some light on the chal‐
lenges of noncompliance experiments. First, notice σ Z  in the denominator. Since Z
is a binary variable, the maximum value for σ Z  is 0.5. This is not much different
from OLS with a binary treatment. (Recall that then, the standard error was
σ e / σ T n ). It simply states that you can maximize the power of a test by ran‐
domizing the treatment in a 50%-50% fashion.

But now you have an extra term in the denominator: the compliance rate, βz, 1st. Not
surprisingly, if compliance is 100%, then Z = T, βz, 1st = 1 and you get back the OLS
standard error. But with noncompliance, the standard error increases, since βz, 1st < 1.
For instance, with 50% compliance, the IV standard error will be twice as large as the
OLS standard error. As a result, the required sample size for an experiment with 50%
compliance is 4x the sample you would need if you had 100% compliance.

Bias of IV

It turns out that the IV estimates are consistent, but not unbiased.
That is, E βIV ≠ β. This is mostly due to sampling error in the first
stage. Since you don’t have infinite data, the fitted value for the
treatment, T, will be a function of both Z and U, meaning that not
all the bias will go away. As you gather more data T will become
less and less a function of U. This is why the estimator is consistent,
meaning that plim

n ∞
βIV = β.

The following plot compares the size of the confidence interval for your LATE
parameter estimate assuming different estimated compliance rates (first image). It

348 | Chapter 11: Noncompliance and Instruments



also shows how many more samples you would need for a test with noncompliance,
considering multiple compliance rates:

Fifty percent compliance is still a lot. In most applications, only a small fraction of
customers opt in for the prime service or product, which makes it even harder to esti‐
mate the LATE. For instance, if compliance is as low as 30%, you’ll need a sample 10x
larger than the one you would need if compliance weren’t an issue. Gathering a sam‐
ple that big tends to be impractical, if not impossible. But if you run into a problem
like this, not all is lost. There are still some tricks you can use to lower the IV stan‐
dard error. In order to do that, you’ll have to include extra covariates in your analysis.

Additional Controls and Instruments
Remember how the prime credit card data had three additional covariates, besides
the treatment, the instrument, and the outcome? They were the customer’s income,
age, and credit score. Now, suppose that the causal graph that describes their relation‐
ship with T, Z, and Y is as follows:

That is, income is highly predictive of the outcome, but doesn’t predict compliance;
credit score predicts compliance, but not the outcome, and age predicts both of them

Additional Controls and Instruments | 349



(is a confounder). If you are smart about how you use those variables, you can
decrease the standard error by using all of them.

First, let’s look at credit score. Credit score causes compliance, but does not cause the
outcome. This means that it can be treated as an additional instrumental variable.
From the DAG, you can see that it satisfies the first three IV assumptions, just like Z.
You only have to assume positivity. Including that variable as an extra IV in your
2SLS model will significantly reduce the standard error of the LATE parameter:

In [13]: formula = 'pv ~ 1 + [prime_card ~ prime_eligible + credit_score]'
         iv_model = IV2SLS.from_formula(formula, df).fit()

         iv_model.summary.tables[1]
         

Parameter Std. Err. T-stat P-value Lower CI Upper CI
Intercept 2519.4 21.168 119.02 0.0000 2477.9 2560.9
prime_card 659.04 58.089 11.345 0.0000 545.19 772.90

Now, you have to be careful here. If instead of treating it as an instrument, you condi‐
tion on it, adding it to the second stage too, the error will increase. But you know this
already, from Chapter 4, where you learned that conditioning on variables that cause
the treatment, but not the outcome, will increase variance. The bigger issue here is
that, unless you know the instrument assignment mechanism (as you do with Z), it is
hard to know if the exclusion restriction holds. For instance, you are assuming that
credit score doesn’t cause the outcome mostly because I told you so and you trust me
since I was the one who generated the data. But in real life, it’s hard to find instru‐
ments like that. Most likely, a covariate affects both compliance and the outcome,
which is the case of age here. For this reason, a much more promising approach to
reducing variance of the IV estimate is to include controls that are highly predictive
of the outcome. For instance, in this example, customer income is very predictive of
purchase volume, so including it as an additional control will lower the standard
error quite substantially:

In [14]: formula = '''pv ~ 1 
         + [prime_card ~ prime_eligible + credit_score]
         + income + age'''

         iv_model = IV2SLS.from_formula(formula, df).fit(cov_type="unadjusted")

         iv_model.summary.tables[1]
         

Parameter Std. Err. T-stat P-value Lower CI Upper CI
Intercept 210.62 37.605 5.6008 0.0000 136.91 284.32
age 9.7444 0.8873 10.982 0.0000 8.0053 11.483

350 | Chapter 11: Noncompliance and Instruments



income 0.3998 0.0008 471.04 0.0000 0.3981 0.4014
prime_card 693.12 12.165 56.978 0.0000 669.28 716.96

As for variables like age, which affect both the outcome and compliance, the effect on
the standard error will be more nuanced. Like with the regression case, if it explains
the treatment a lot more than the outcome, it might end up increasing the variance.

2SLS by Hand
Since you won’t always have instrumental variable software at your disposal, I think it
is worth learning how to implement 2SLS by hand, especially since it is not at all
complicated. If you have more than one instrument and additional covariates, you
can include them in your model by:

1. Running the first stage, regressing the treatment on instruments and the addi‐
tional covariates, T ~ Z + X.

2. Running the second stage by regressing the outcome on the treated fitted values
(from the first stage) and the additional covariates, Y ~ T_hat + X:

In [15]: formula_1st = "prime_card ~ prime_eligible + credit_score + income+age"
         first_stage = smf.ols(formula_1st, data=df).fit()

         iv_model = smf.ols(
             "pv ~ prime_card + income + age",
             data=df.assign(prime_card=first_stage.fittedvalues)).fit()

         iv_model.summary().tables[1]
         

coef std err t P>|t| [0.025 0.975]
Intercept 210.6177 40.832 5.158 0.000 130.578 290.657
prime_card 693.1207 13.209 52.474 0.000 667.229 719.013
income 0.3998 0.001 433.806 0.000 0.398 0.402
age 9.7444 0.963 10.114 0.000 7.856 11.633

Matrix Implementation
This will give you the exact same IV estimate as the one you got with linearmodels,
but the standard errors will be off. If you want those, you are probably better off with
the matrix implementation of 2SLS. To do that, you have to append the additional
covariates into both the treatment and the instrument matrix. Then, you can find the
IV parameters as follows:

Additional Controls and Instruments | 351



X = Z Z′Z −1Z′X

βIV = X′X −1XY

When coding it up, you just have to be careful with large N. Z Z′Z −1Z′ will be an
huge N×N matrix, which can be avoided if you just first multiply Z′Z −1Z′X and
then pre-multiply Z:

In [16]: Z = df[["prime_eligible", "credit_score", "income", "age"]].values
         X = df[["prime_card", "income", "age"]].values
         Y = df[["pv"]].values

         def add_intercept(x):
             return np.concatenate([np.ones((x.shape[0], 1)), x], axis=1)

         Z_ = add_intercept(Z)
         X_ = add_intercept(X)

         # pre-multiplying Z_.dot(...) last is important to avoid
         # creating a huge NxN matrix
         X_hat = Z_.dot(np.linalg.inv(Z_.T.dot(Z_)).dot(Z_.T).dot(X_))

         b_iv = np.linalg.inv(X_hat.T.dot(X_hat)).dot(X_hat.T).dot(Y)
         b_iv[1]
         

Out[16]: array([693.12072518])
         

Once more, you have the exact same coefficient as before. Once you have that, you
can compute the IV residuals and the variance:

Var βIV = σ2 e iv diag X′X −1

In [17]: e_hat_iv = (Y - X_.dot(b_iv))

         var = e_hat_iv.var()*np.diag(np.linalg.inv(X_hat.T.dot(X_hat)))

         np.sqrt(var[1])
         

Out[17]: 12.164694395033125
         

This variance formula is a bit harder to interpret, due to the matrix notation, but you
can approximate something that is more in line with what you had before, in the case
without additional covariates:

352 | Chapter 11: Noncompliance and Instruments



SE βIV ≈
σ eIV

σ T nR1st
2

Here, T is the residuals of the treatment regressed on the additional covariates, but
not the instrument, and R1st

2  is the R2 from the first stage:

In [18]: t_tilde = smf.ols("prime_card ~ income + age", data=df).fit().resid

         e_hat_iv.std()/(t_tilde.std()*np.sqrt(n*first_stage.rsquared))
         

Out[18]: 12.156252763192523
         

With this formula, you can see that, aside from increasing the sample size, you have
three levers to decrease the standard error:

1. Increasing the first stage R2. This can be done by finding strong instruments,
which are variables that are good at predicting compliance, but satisfy the exclu‐
sion restriction (do not cause the outcome).

2. Removing variables that are highly predictive of T in order to increase σ T .

3. Decreasing the size of the second stage residuals, which can be done by finding
variables that are highly predictive of the outcome.

Of those three levers, I confess I only like the last one. As I said before, it is very hard
to find IVs in the wild. Also, there is only so much you can remove in order to
decrease σ T . Which leaves you with the only reliable way to decrease the variance:
finding variables that are good at predicting the outcome.

Discontinuity Design
Regression discontinuity design (RDD) is another design worth mentioning in addi‐
tion to the traditional instrumental variable and noncompliance designs. Although
RDD is widely used in academia, its application in industry may be more limited.
RDD leverages artificial discontinuities in the treatment assignment to identify the
treatment effect. For example, suppose a government implements a money transfer
program that offers poor families a monthly check of 200 USD in the local currency,
but only families earning less than 50 USD are eligible. This creates a discontinuity in
the program’s assignment at 50 USD, allowing researchers to compare families just
above and just below the threshold to measure the program’s effectiveness, provided
that the two groups are similar.

RDD can be applied to many other situations besides the money transfer program
example. Discontinuities are pervasive, making RDD very attractive to researchers.

Discontinuity Design | 353



For instance, to understand the impact of college, researchers can compare people
who scored just above and just below a passing threshold in an admission exam. To
assess the impact of women on politics, researchers can compare cities where a
female candidate lost by a small margin to those where a female candidate won by a
small margin. The applications are endless.

RDD can also be useful in industry, but to a lesser extent. For example, suppose a
bank offers a credit card to all its customers, but charges a fee to those with an
account balance below 5,000 USD. This creates a discontinuity in the way the card is
offered, where customers with balances above the threshold are more likely to choose
the prime card, while those with balances below the threshold are not. Thus, RDD
can be applied to compare the effects of having a prime card versus a regular card,
provided that customers above and below the threshold are similar in other respects.

Regarding the relevance of discontinuity designs in the industry, I believe that it is
less applicable since firms could easily conduct experiments to randomize eligibility,
as we have discussed earlier. However, let us suppose, for the sake of this example,
that running such experiments would be time-consuming. Maybe because the
required sample is too big, due to low compliance.

In contrast, the bank in question already has data following the discontinuity design
described previously. Therefore, the bank can leverage this data to determine the
effect of the prime credit card. How can the bank use the discontinuity for this pur‐
pose? The basic idea is to recognize that the threshold can be understood as an
instrument since crossing it increases the likelihood of receiving the treatment.

In the following image, you can see how the discontinuity design relates to instru‐
mental variables. The bottom part shows the counterfactual treatment by account
balance. Since the instrument is crossing the 5,000 USD threshold, you can observe
T0 when balance < 5,000 and T1 otherwise. Moreover, since the instrument increases
the chance of getting the treatment (the prime card), there is a jump in P T = 1  once
you cross the threshold. The upper part of the plot reflects how those changes in
treatment probability impact the outcome.

354 | Chapter 11: Noncompliance and Instruments



Figure 11-4. Potential outcomes and potential treatment in a discontinuity design

The probability of treatment being less than one, even above the threshold, makes the
outcome you observe less than the true potential outcome Y1. By the same token, the
outcome you observe below the threshold is higher than the true potential outcome
Y0. This makes it look like the treatment effect at the threshold is smaller than it
actually is and you will have to use IV to correct for that.

Discontinuity Design Assumptions
Besides the IV assumptions, the discontinuity design requires one further assumption
about the smoothness of the potential outcomes and potential treatment functions.
Let’s define a running variable R such that the treatment probability is a discontinu‐
ous function of that variable at a threshold R = c. In your banking example, R would
be the account balance and c = 5,000.

Now, you need to assume that:

lim
r c−

E Yt R = r = lim
r c+

E Yt R = r

lim
r c−

E Tz R = r = lim
r c+

E Tz R = r

Discontinuity Design | 355



In other words, the potential outcome Yt and potential treatment Tz at the disconti‐
nuity R = c are the same if you approach them from the left or from the right.

With those assumptions at hand, you can derive the local average treatment effect
estimator for a discontinuity design:

LATE =
lim

r c+ E Y R = r − lim
r c− E Y R = r

lim
r c+ E T R = r − lim

r c− E T R = r

= E Y1 − Y0 T1 > T0, R = c

Importantly, this estimator is local in two senses. First, it is local because it only gives
the treatment effect at the threshold R = c. This is the discontinuity design locality.
Second, it is local because it only estimates the treatment effect for the compliers. This
is the IV locality.

Intention to Treat Effect
In the top part of Figure 11-4, the jump in the observed outcome at the threshold is
the intention-to-treat effect, since it measures how the outcome changes as you
change the instrument. Let’s now see how you can estimate it, since this will be the
numerator of your final IV estimate. To do so, let’s first read the data containing
information on the customer’s account balance, whether or not they choose the prime
card, and what their purchase volume is:

In [19]: df_dd = pd.read_csv("./data/prime_card_discontinuity.csv")
         df_dd.head()
         

balance prime_card pv tau categ
0 12100.0 1 356.472 300.0 always-takers
1 4400.0 1 268.172 300.0 always-takers
2 4600.0 1 668.896 300.0 always-takers
3 3500.0 1 428.094 300.0 always-takers
4 12700.0 1 1619.793 700.0 complier

Next, you need to regress the outcome variable on the running variable R (balance)
interacted with a dummy for being above the threshold (R > c):

yi = β0 + β1ri + β2� ri > c + β3� ri > c ri

The parameter estimate associated with crossing the threshold, β2, can be interpreted
as the intention-to-treat effect:

356 | Chapter 11: Noncompliance and Instruments



In [20]: m = smf.ols(f"pv~balance*I(balance>5000)", df_dd).fit()
         m.summary().tables[1]
         

coef std err t P>|t| [0.025 0.975]
Intercept 251.1350 19.632 12.792 0.000 212.655 289.615
I(balance > 5000)[T.True] 354.7539 22.992 15.430 0.000 309.688 399.820
balance 0.0616 0.005 11.892 0.000 0.051 0.072
balance:I(balance > 5000)[T.True] –0.0187 0.005 –3.488 0.000 –0.029 –0.008

Notice that this is essentially running two regression lines: one above and one below
the threshold. If compliance was not an issue, meaning that everyone above the
threshold would get the treatment and everyone below the threshold would get the
control, you could still use this approach. If that where the case, compliance would be
100%, the ITTE would already be the ATE:

The IV Estimate
Since compliance is not 100%, you need to divide the intention-to-treat effect by the
compliance rate. In the context of a discontinuity design, that would be how much
the treatment probability changes as you cross the threshold. To estimate this num‐
ber, you can simply repeat the previous procedure, replacing the outcome variable,
pv, with the treatment, prime_card. Here is a simple function to compute the IV esti‐
mate in a discontinuity design. It estimates the ITTE and the compliance rate and
divides one by the other:

In [21]: def rdd_iv(data, y, t, r, cutoff):
             compliance = smf.ols(f"{t}~{r}*I({r}>{cutoff})", data).fit()
             itte = smf.ols(f"{y}~{r}*I({r}>{cutoff})", data).fit()
             
             param = f"I({r} > {cutoff})[T.True]"
             return itte.params[param]/compliance.params[param]

Discontinuity Design | 357



         
         rdd_iv(df_dd, y="pv", t="prime_card", r="balance", cutoff=10000)
         

Out[21]: 654.3917626767736
         

Applying this function to your data yields an estimate that is pretty close to the true
LATE. Remember that you can check this since this dataset contains the individual
level treatment effect stored in the tau column and the compliance category:

In [22]: (df_dd
          .round({"balance":-2}) # round to nearest hundred
          .query("balance==5000 & categ=='complier'")["tau"].mean())
         

Out[22]: 700.0
         

Finally, although you could derive a formula to calculate the confidence interval of
that estimator, the easiest way is to simply wrap the entire function in a bootstrap
procedure. I’ll hide the code for this since it is fairly repetitive, but you can see the
resulting interval here:

array([535.49935691, 781.24156232])

Bunching
Before closing this chapter, I just wanted to mention a potential issue to the disconti‐
nuity design identification. If the units (customers in your example) can manipulate
the running variable, they can also self-select into the treatment group. In the prime
credit card example, customers could decide to increase their deposits until it reached
just 5,000 so that they would get the prime credit card for free. This would violate the
assumption about the smoothness in the potential outcomes, since those just above
the threshold would no longer be comparable to those just below it.

A simple and visual way to check if this is happening is to plot the density around the
threshold. If units are self-selecting into the treatment, you would expect a huge spike
in the density at the threshold. Fortunately, it does not appear to be the case with this
data:

358 | Chapter 11: Noncompliance and Instruments



Key Ideas
In this chapter you learned that noncompliance becomes an issue when people can
choose not to take a treatment. This is fairly common in the industry, as companies
tend to have a pool of optional products or services. In those situations, the customer
choice confounds the effect of the product or service, even if the company can ran‐
domize their availability.

You also learned about the compliance groups or types:

Compliers
Those who take the treatment that was assigned to them.

Always takers
Those who always take the treatment, regardless of the assignment.

Never takers
Those who never take the treatment, regardless of the assignment.

Defiers
Those who take the opposite treatment from the one assigned.

And you learned how to use instruments to deal with noncompliance. Namely, an
instrument Z is a variable that (1) impacts the treatment in a nonconfounded way
and (2) doesn’t impact the outcome, unless through the treatment:

Key Ideas | 359



On top of that, if you assume that the instrument flips the treatment in a single direc‐
tion (monotonicity assumption), you can use it to identify the average treatment
effect on the compliers:

E Y1 − Y0 T1 > T0 = E Y Z = 1 − E Y Z = 0
E T Z = 1 − E T Z = 0

In other words, all you have to do is to normalize the intention to treat the effect by
the compliance rate, both of which are easy to identify if the instrument is random‐
ized.

However, there is still a price to pay in terms of variance. If compliance is low, the
variance of the instrumental variable estimate will be substantially larger than that of
OLS. Particularly, if compliance is 50%, you would need 4x more samples to achieve
the same standard errors as if compliance was not an issue (100% compliance). There
are some additional tricks to decrease the variance, but the most promising one
seems to be finding variables that are good at predicting the outcome, pretty much as
it was the case with OLS.

Additionally, you learned that discontinuities in your data could also be treated as
instruments. In general, you probably won’t need to rely on them, since deploying
experiments is fairly common and easy in the industry. Still, in the case that experi‐
ments are not available, you can leverage those discontinuities to identify the local
average treatment effect.

PRACTICAL EXAMPLE

Quarter of Birth Instrument
As I said earlier, it is pretty hard to find valid instrumental variables in the wild, but
quarter of birth might be one of those. In the US, being born in the last quarter means
you’ll probably have more school years, since you’ll join school earlier in your life. If
quarter of birth doesn’t affect income (unless through schooling) and is as good as
random, economists can use it to identify the effect of school on income.

By doing that, economists estimated that we should expect one extra year of educa‐
tion to increase wages by 8.5%, on average:

360 | Chapter 11: Noncompliance and Instruments



CHAPTER 12

Next Steps

It has been a long way since you were first introduced to counterfactuals. This book
has taken you on a journey through the world of causal inference, starting with the
basics and gradually building up to more advanced concepts and techniques. You
should now have a solid understanding of how to reason about causation and how to
use various methods to untangle causation from correlation in your data.

You have learned about the importance of A/B testing as the gold standard for causal
inference, the power of graphical models for causal identification, and the use of lin‐
ear regression and propensity weighting for bias removal. You have explored the
intersection between machine learning and causal inference and how to use these
tools for personalized decision making.

Furthermore, you have learned how to incorporate the time dimension into your
causal inference analyses using panel datasets and methods like difference-in-
differences and synthetic control. Finally, you have gained an understanding of alter‐
native experiment designs for when randomization is not possible, such as geo and
switchback experiments, instrumental variables, and discontinuities.

With the knowledge and tools presented in this book, you are equipped to tackle real-
world problems and make informed decisions based on causation rather than corre‐
lation. I hope you enjoyed it and that it keeps being useful to you throughout your
career.

This being an introductory book, I intentionally left out some of the causal inference
topics that are active areas of research, but have not yet become widespread in the
industry. This doesn’t mean they aren’t useful. Sometimes they are simply compli‐
cated, with no easy-to-use software that wraps them. If you enjoyed this book and
you are craving something more, I suggest you explore one of the following topics.

361



Causal Discovery
Throughout this book, you used causal graphs as a starting point for your causal
inference analysis. But what if you don’t know the causal graph and, instead, have to
learn it from data? Causal discovery is a field of study that focuses on finding causal
relationships between variables in a given system by using data generated from that
system. Causal discovery is the process of going from data to causal knowledge. If you
want to learn more about it, a good place to start is the paper “Causal Discovery Tool‐
box: Uncover Causal Relationships in Python,” by Diviyan Kalainathan and Olivier
Goudet.

Sequential Decision Making
Although this book covered panel data structures, it did it mostly in the context of
staggered adoption, which (among other things) means that there is no treatment-
confounder feedback, which can typically arise when the treatment assignment is
decided at each period in a sequence. To provide a concrete example, suppose you
want to study the effect of a medical procedure (T) on hospital discharge rates (Y).
However, the decision to perform the procedure depends on patient symptoms, and
this decision is made on a daily basis. Therefore, the probability of a patient receiving
the treatment on a particular day depends on whether they were treated on previous
days and their symptoms over those days:

Although all the variables used to determine whether to treat or not are observable,
traditional methods like regression may not be suitable for estimating the treatment
effect due to the complex time dynamics and treatment-confounder feedback.
Adjusting for confounders, such as patient symptoms, leads to noncausal paths, such
as T0 Symptom1 U1 Y.

362 | Chapter 12: Next Steps



Causal inference with sequential decision making has many applications in the indus‐
try. However, it is an incredibly intricate topic, which is why I left it out of this book. 
Still, if you are faced with a situation like the one I just described, I suggest you check
out the book Causal Inference: What If, by Hernán and Robins. The last part of the
book is dedicated to sequential decision making.

Causal Reinforcement Learning
Causal reinforcement learning (CRL) is an area of machine learning that combines
the principles of causal inference and reinforcement learning. The goal of CRL is to
automate the treatment allocation process with the objective of optimizing the out‐
come that the treatment influences. To achieve this goal, the automated decision-
making system needs to balance exploiting promising treatments with exploring new
treatments or applying the same treatment to different types of individuals. However,
the use of observable variables in the decision-making process can lead to confound‐
ing, as there may be factors that affect both the treatment allocation and the observed
outcome. Therefore, the system must adjust for these confounders to better under‐
stand the optimal treatments, which is a key challenge in CRL.

A simple example of where CRL could be applied is in the medical setting described
earlier. However, instead of understanding the impact of a medical procedure, the
objective would be to craft an agent that can recommend the procedure to physicians
in a way that optimizes the patient outcomes. The agent would need to consider fac‐
tors such as patient symptoms and medical history to make treatment recommenda‐
tions that are tailored to each patient’s individual needs while accounting for the
causal relationships between the treatment and the observed outcomes.

Much of the literature in causal reinforcement learning gets entangled with that of
contextual bandits. The two are, in fact, closely related. If you want a good place to
start, I recommend the paper “Contextual Bandits in a Survey Experiment on Chari‐
table Giving: Within-Experiment Outcomes Versus Policy Learning,” by Athey et al.,
and the American Economic Association Continuing Education Webcast on “Modern
Sampling Methods,” by Keisuke Hirano and Jack Porter.

Causal Forecasting
Causal forecasting is a methodology that seeks to forecast future outcomes by taking
into account the causal relationships between variables. Unlike traditional forecasting
methods that rely solely on statistical associations between variables, causal forecast‐
ing aims to identify and model the underlying causal mechanisms that drive the rela‐
tionships between variables. This approach can lead to more accurate and reliable
forecasts, especially in complex systems where traditional statistical models may fail
to capture the true causal relationships.

Causal Forecasting | 363

https://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/


Causal forecasting typically involves a bit of causal discovery, since an important step
in causal forecasting is figuring out if a correlation between X and Y is due to X Y,
Y X, or Y U X. However, causal forecasting also requires dealing with the
additional complexity of traditional time-series modeling, like nonstationarity and
the data not being independent and identically distributed. A good place to learn
more about this topic is the American Economic Association 2019 Continuing Edu‐
cation Webcast on Time-Series Econometrics, by James H. Stock and Mark W.
Watson.

Domain Adaptation
Causal inference is the process of understanding what would happen from what did
happen. This involves moving from a factual distribution, such as Y T = 1, to a
counterfactual one, like Y1. The problem of inferring something about a distribution
while having data from another one is known as domain adaptation, and it has many
applications beyond causal inference. For instance, consider a financial services com‐
pany that wants to detect fraudulent transactions. At first glance, this may appear to
be a purely predictive task, where the company can train a machine learning model
on its past transactions and use it to classify future transactions. However, the data
the company has is fundamentally different from the data it needs to classify. Specifi‐
cally, the company only has transactions that were authorized by its previous fraud-
detection system. If that system was effective, then P(fraud) in the training data will
be lower than P(fraud) for the future transactions the company model has to classify.
In other words, the company has data on Y|filtered but wants to build a model that is
good at predicting Y without the filter. The company wants its model to act as the
filter.

This is just one example, but there are many others. For instance, a company that is
expanding into new countries may want to use its existing data from other countries
to train predictive models that will perform well in the new country. Alternatively, a
company’s past data may behave differently from its current and future data, indicat‐
ing that the distributions are shifting over time. In fact, since data is rarely stationary,
most businesses will have to deal with distribution shifts in some way or another. This
will require them to learn from one distribution to apply their insights to another. 
Although this problem is not strictly in the realm of causal inference, many of the
techniques used in causal inference can be applied here. A good review on the litera‐
ture on concept drift is given by the paper “Learning Under Concept Drift: A Review,”
by Lu et al.

364 | Chapter 12: Next Steps



Closing Thoughts
I hope I have sparked your interest in continuing your journey in causal inference.
The nice thing about research is that it never ends. I myself intend to keep writing
about causal inference for the foreseeable future and I would like to invite you to join
me. You can find me on GitHub, Twitter, and LinkedIn, where I post regularly about
causal inference. But most of all, my wish is that I have sparked in you an interest in
this very fascinating topic. Although this book has come to an end, your learning
journey on causal inference has just begun. I wish you all the best on the path ahead!

Closing Thoughts | 365

https://github.com/matheusfacure
https://twitter.com/MatheusFacure
https://www.linkedin.com/in/matheus-facure-7b0099117/




Index

Symbols
* operator, 185
1 – β for power, 56
2SLS (see two-stage least squares)
: operator, 185
@curry decorator, 189
^ (hat) denoting sample estimates, 42
α for significance level, 52
β and β-hat, 98
δ as detectable difference between parameter

estimate and null hypothesis, 56
sample size calculation, 57

ê(x) for propensity score model, 159
μ for mean, 36
μ̂ for sample mean, 36
m̂(x) for outcome model, 162
σ as standard deviation, 38
σ-squared for variance, 36
σ̂ as estimate of standard deviation, 42
σ̂-squared for estimate of variance, 36
x̄ as mean of x, 42
← for causal model nonreversibility, 9

A
“A/B Testing Intuition Busters: Common Mis‐

understandings in Online Controlled
Experiments” (Kohavi et al.), 58

A/B tests
linear regression, 97-100
randomized treatment example, 33-37
randomizing treatment and confounders, 82

Abadie, Alberto, 248, 287, 317
Abraham, Sarah, 270
adjustment formula, 77

curse of dimensionality, 97
positivity assumption, 78

advanced topics
causal discovery, 362
causal forecasting, 363
causal reinforcement learning, 363
domain adaptation, 364
sequential decision making, 362

Agrawal, Ajay, 5
American Economic Association Continuing

Education Webcast, 363, 364
Angrist, Joshua D., 115
area under the curve (AUC), 195
Arkhangelsky, Dmitry, 304
association

causation and
about, 6
association equal to causation, 24, 31
bias making association different from

causation, 18
causal models, 9
causal quantities of interest, 14-16
causal quantities of interest example,

16-18
do(.) operator, 11
fundamental problem of causal infer‐

ence, 8, 14
graphing, 74

(see also graphical causal models)
individual treatment effect, 12
interventions, 10-12
potential outcomes, 12
treatment and outcome, 7
untangling association and causation, 65

367



conditioning on a collider, 70
cheat sheet for flows of association, 71
flow visualized in graph, 74

(see also graphical causal models)
definition of association, 4
description of association, 31
flows of association, 75

backdoor adjustment, 77
backdoor paths, 75
cheat sheet for flows of association, 71
confounding, 80
flow visualized in graph, 74, 76

(see also graphical causal models)
assumptions

about, 13
conditional independence assumption, 76

bias-variance trade-off, 159-161
conditionally random experiments and,

124
consistency of potential outcome, 13

fixing violations, 14
difference-in-differences identification

no anticipation assumption and SUTVA,
251

no carryover effect, 254
no feedback, 253
no lagged dependent variable, 254
no time varying confounders, 252
parallel trends, 249-251
sequential ignorability, 254
strict exogeneity, 252-254

identification, model-based versus design-
based, 161
doubly robust estimation for both,

162-164
doubly robust outcome model example,

167-169
doubly robust treatment model example,

164-167
independence assumption, 25, 32

A/B testing example, 33-37
instrument identification, 342-344

exclusion restriction, 342
independence, 342
monotonicity, 342
relevance, 342

positivity assumption, 78
bias-variance trade-off, 159-161
IPW versus regression, 161

regression discontinuity design, 355
stable unit of treatment value, 14

fixing violations, 14
synthetic control, 287

no anticipation of the treatment, 287
no spillovers, 287

ATE (see average treatment effect)
Athey, Susan, 143, 230, 248, 363
ATT (see average treatment effect on the

treated)
author contact information, 365
average

expectations, 11
normal distribution, 45

average effect on the control (ATC), 238
average treatment effect (ATE)

about, 14
adjustment formula, 77
bedrock of causal inference, 179
bias making association different from cau‐

sation, 19
bias equation, 19-20

causal quantities example, 16-18
estimated ATE via propensity score in linear

regression, 146
positivity assumption of treatment mem‐

bers, 78
average treatment effect on the treated (ATT)

about, 15
causal quantities example, 16-18
difference-in-differences over time, 255-257
panel data, 238

B
backdoor paths, 75, 76

backdoor adjustment, 77
front door adjustment, 80

blocking with propensity score, 144
(see also propensity weighting)

confounding bias, 80
about confounding, 80
randomization, 82
surrogate confounding, 81

Bareinboim, Elias, 24
“Bayesian Alternative to Synthetic Control for

Comparative Case Studies” (Xu et al.), 306
Bayesian credible intervals, 49
Bayesian structural time-series models, 306
Bernoulli distribution, 43-45, 164

368 | Index



Bernoulli variable, 151
Beta distribution, 123

Beta sampling, 123
bias

about, 18
main enemy of causal inference, 18

association definition, 20, 31
bias equation, 19-20

association as treatment effect on the
treated plus bias, 20, 31

bias-variance trade-off, 138-139
positivity assumption, 159-161
propensity scores, 158
variables included in regression, 135

biased estimator, 19
potential outcome notation, 19

confounding bias, 80, 134
about confounding, 80
linear regression and, 134-135
propensity score weighting, 144, 146
randomization, 82
surrogate confounding, 81

debiasing techniques
Frisch-Waugh-Lovell orthogonalization,

103, 106-114
inverse propensity weighting, 156

(see also propensity weighting)
linear regression (see linear regression)
orthogonalization summary, 112

definition of bias, 19
exchangeability of treated and control units,

20
visually expressed, 21-23

identification as eliminating, 24, 27
graphical causal models, 75
identification example with data, 78-79

instrumental variables, 348
neutral controls, 135
omitted variable bias, 134-135
propensity score matching estimator bias,

148
S-learner effect of treatment toward zero,

222
selection bias, 83-86

about, 83
adjusting for, 87-89
causal identification, 84
conditioning on a collider, 83-86
conditioning on a mediator, 89

conditioning on effect of outcome, 86
propensity score weighting controlling,

157
survival analysis hidden bias, 88

Simpson’s Paradox, 21
synthetic control debiased, 291-295
systematic errors, 41
terminology, 83
visual guide to, 21-23

binary outcomes and effect ordering, 200
binary treatments

effect heterogeneity, 180
(see also effect heterogeneity)

metalearners, 208
S-learners, 218-222
T-learners, 209-212

potential outcome notation, 13
propensity score, 141

(see also propensity weighting)
regression for potential outcome, 114

saturated regression model, 127-129
birth quarter example of instrumental variables,

360
block bootstrap, 247
Bojinov, Iavor, 333
boosted regression trees, 210

LGBMRegressor model, 210
Butts, Kyle, 251

C
Callaway, Brantly, 272
Card, David, 240
CATE (see conditional average treatment

effects)
categorical treatment T-learners, 209-212
“Causal Classification: Treatment Effect Estima‐

tion vs. Outcome Prediction” (Fernández-
Loría and Provost), 201

causal contextual bandits, 154
causal discovery, 362
“Causal Discovery Toolbox: Uncover causal

relationships in Python” (Kalainathan and
Goudet), 362

causal effect versus observable quantities, 77
causal forecasting, 363

causal discovery for, 364
causal inference

association and causation
about, 6

Index | 369



association equal to causation, 24, 31
causal models, 9
causal quantities of interest, 14-16
causal quantities of interest example,

16-18
fundamental problem of causal infer‐

ence, 8, 14
individual treatment effect, 12
interventions, 10-12
potential outcomes, 12
treatment and outcome, 7
untangling association and causation, 65

assumptions, 13
(see also assumptions)
consistency of potential outcome, 13
fixing violations, 14
stable unit of treatment value, 14

bias as main enemy, 18
(see also bias)

causal models, 9
(see also causal models)

causal quantities of interest, 14-16
causal quantities of interest example,

16-18
missing data problem, 18

data, simulated versus real-world, 35
definition, xiii, 4

credit limit change example, xii
marketing budget change example, xi

explanation, 3
why do it, 4

graphing causal models, 74
(see also graphical causal models)

identification as first step, 23, 25, 61
(see also identification)

identifying the treatment effect, 23
inference, 38-41
interventions, 10-12

definition, 10
do(.) operator, 11

machine learning and, 5
as a missing data problem, 18
structural causal models, 62
summary metric, 197

target transformation, 197-198
unit of analysis, 7

Causal Inference and Data Fusion in Econo‐
metrics (Hünermund and Bareinboim), 24

“Causal Inference and Uplift Modeling A
review of the literature” (Gutierrez and G’er‐
ardy), 196

“Causal Inference With a Continuous Treat‐
ment and Outcome” (Galagate), 175

“Causal Inference with Time-Series Cross-
Sectional Data: A Reflection” (Xu), 254

Causal Inference: What If (Hernán and Rob‐
ins), 83, 254, 363

causal models
about, 9
definition, 9
evaluation literature scarce, 196, 198
expectations, 11

conditional expectations, 11
graphical (see graphical causal models)
interventions, 10-12

do(.) operator, 11
individual treatment effect, 12

structural causal models, 62
u for variables outside the model, 9

additional variables modeled, 9
← for nonreversibility, 9

causal quantities of interest, 14-16
causal quantities of interest example, 16-18
missing data problem, 18

causal reinforcement learning (CRL), 363
causal-curve Python package, 175
causalimpact library (Google), 306
causality

about, 61-63
visualizing to clarify thinking, 64

definition, 4
randomized experiments or controlled trials

for, 37
causalml library for tree-based CATE learners,

230
causation and association

about, 6
association equal to causation, 24, 31
bias making association different from cau‐

sation, 18
causal models, 9
causal quantities of interest, 14-16
causal quantities of interest example, 16-18
do(.) operator, 11
fundamental problem of causal inference, 8,

14
individual treatment effect, 12

370 | Index



interventions, 10-12
potential outcomes, 12
treatment and outcome, 7
untangling causation and association, 65

Central Limit Theorem, 44-45
chains in graphical models, 67

mediators, 67, 90
Chernozhukov, Victor, 222, 223, 248, 297
CIA (see conditional independence assump‐

tion)
Cinelli, Carlos, 82, 86
colliders between variables, 70

conditioning on, 70
selection bias, 83

virtual colliders, 86
“Comment: Performance of Double-Robust

Estimators When ‘Inverse Probability’
Weights Are Highly Variable” (Robins), 169

common cause between treatment and out‐
come, 69, 80
(see also confounders)

common support (see positivity assumption)
concept drift with data, 364
conditional average treatment effects (CATE)

about, 15, 189
causal quantities example, 16-18
effect heterogeneity, 179

CATE with linear regression, 183-186
cumulative effect, 192
cumulative gain, 194-197
decision making with, 201-204
effect by model quantile, 189-192
evaluating CATE predictions, 187-188
identification not a worry, 184
prediction not the answer, 181
response curve shape, 190
when prediction model is good for effect

ordering, 199-201
estimating, 184
individual treatment effect versus, 183
metalearners for estimation, 207

(see also metalearners)
noisy, 201
personalization, 15, 189

conditional expectations, 11
conditional independence assumption (CIA),

76
bias-variance trade-off, 159-161
conditionally random experiments and, 124

conditionality principle, 77, 131
conditionally random experiments, 122-124

Beta sampling, 123
keeping close to completely random, 123
noise inducing control, 136

confidence intervals, 42-49
95% probability of true mean, 44

caution in interpreting, 49
99% confidence interval, 46
calculating, 44-48
caution in interpreting, 49
difference-in-differences, 247

block bootstrap, 247
null hypothesis, 51-52
p-value and, 55
statistical significance, 56

confounders
backdoor paths, 75

backdoor adjustment, 77
common cause, 69, 80
confounding bias, 80, 134

about confounding, 80
linear regression and, 134-135
propensity score weighting, 144, 146
randomization, 82
surrogate confounding, 81

known or treatment randomized, 82
omitted variable bias in linear regression,

134-135
propensity score weighting, 144, 146
regression to adjust, 143
unmeasurable, 81

sensitivity analysis, 82
consultants worthwhile example, 65
contact information for author, 365
“Contamination Bias in Linear Regressions”

(Goldsmith-Pinkham et al.), 95
contextual bandits, 154

causal reinforcement learning, 363
“Contextual Bandits in a Survey Experiment on

Charitable Giving: Within-Experiment Out‐
comes Versus Policy Learning” (Athey et
al.), 363

continuous treatments
causal-curve Python package, 175
continuous variables with zero probability,

170
effect heterogeneity, 180

(see also effect heterogeneity)

Index | 371



generalized propensity score for, 169-175
literature on, 175
metalearners, 217

Double/Debiased machine learning,
223-230

S-learners, 218-222
slope of regression line, 114
standard error formula, 111

control groups
independence assumption, 32

A/B testing example, 33-37
randomizing the treatment, 33

positivity assumption of control group
members, 78

costs that are hidden, 204
counterfactual predictions of S-learners, 218,

220
COVID-19 vaccine effectiveness, 48
“A Crash Course in Good and Bad Controls”

(Cinelli, et al.), 86
credible intervals, 49
cross-sectional data, 235

pooled cross-section, 235
repeated cross-sectional data, 235

cross_val_predict function (sklearn), 224
cumulative distribution function (CDF), 46
cumulative gain, 194-197

T-learner model evaluation, 210
curry decorator, 189
curse of dimensionality, 97

linear regression against, 97
Curth, Alicia, 230

D
d-separation, 73
DAGitty for identification under selection bias,

84
DAGs (directed acyclic graphs), 63, 65

consultants worthwhile example, 65
noncompliance and instrumental variables,

338
data

average normally distributed, 44
cross-sectional data, 235

pooled cross-section, 235
repeated cross-sectional data, 235

domain adaptation, 364
management impact dataset, 143
missing data

causal inference as missing data prob‐
lem, 18

linear regression for, 114
panel data, 238

panel data, 235
(see also panel data)

random errors, 41
real-world versus simulated data, 35
self-regularization by ML algorithms, 212

estimated treatment effect restricted, 222
simulated versus real-world data, 35
small sample size and inference, 38-41

Moivre’s equation, 38-41
training and testing sets for model evalua‐

tion, 187
wage1 dataset, 100

de-meaning, 131-133
decision making with conditional average treat‐

ment effects, 201-204
denoising step of orthogonalization, 109

noise reduction of linear regression, 136
dependent variables, 67

immorality and colliders, 70
querying a graph in Python, 72-75

“Design and Analysis of Switchback Experi‐
ments” (Bojinov, Simchi-Levi, and Zhao),
333

design of experiments (see experimental
design)

design-based identification, 161
doubly robust estimation for model-based

also, 162-164
doubly robust outcome model example,

167-169
doubly robust treatment model example,

164-167
“Designing Experiments with Synthetic Con‐

trols” (Doudchenko et al.), 317, 318
developing country growth and higher educa‐

tion, 268
Diff-in-Diff method (see difference-in-

differences)
difference-in-differences (DID)

canonical, 239
with fixed effects, 243
inference, 246-248
multiple time periods, 244-246
with OLS, 242
with outcome growth, 240

372 | Index



variance and time periods, 247
confidence intervals, 247

block bootstrap, 247
with covariates, 257-260
doubly robust diff-in-diff, 260

all together, 261-263
delta outcome model, 260
propensity score model, 260

effect dynamics over time, 255-257
identification assumptions

no anticipation assumption and SUTVA,
251

no carryover effect, 254
no feedback, 253
no lagged dependent variable, 254
no time varying confounders, 252
parallel trends, 249-251
sequential ignorability, 254
strict exogeneity, 252-254

Nobel Prize for popularizing, 240
panel data, 235, 236

imputing missing data, 238
regression weights proportional to variance,

131
staggered adoption, 263-268

about, 362
covariates, 272
heterogeneous effect over time, 268-272

synthetic control
about, 298
estimating time weights, 301
recasting synthetic control estimator,

298-300
refresher on DID, 298
running DID, 303-305

“Difference-in-Differences Estimation with
Spatial Spillovers” (Butts), 251

“Difference-in-Differences with Multiple Time
Periods” (Sant’Anna and Callaway), 272

“Difference-in-Differences with Variation in
Treatment Timing” (Goodman-Bacon), 95,
268

DiGraph (networkx), 73
dimensionality curse, 97

linear regression against, 97
directed acyclic graphs (see DAGs)
discontinuity design (see regression discontinu‐

ity design)
discrete treatments

effect heterogeneity, 180
(see also effect heterogeneity)

metalearners, 208
T-learners, 209-212
X-learners, 212-217

propensity score, 141
(see also propensity weighting)

distributions and domain adaptation, 364
distributions other than normal using general‐

ized linear models, 172
do(.) operator for interventions, 11

association different from causation, 11
explicitly state causal quantity, 11
identification as eliminating, 12
individual treatment effect, 12
potential outcomes, 12

domain adaptation, 364
domain adaptation learner, 214-217
Double/Debiased machine learning, 223-230

CATE predictions from, 225
visual intuition for, 226-230

“Double/Debiased/Neyman Machine Learning
of Treatment Effects” (Chernozhukov et al.),
222, 223

doubly robust (DR) estimation, 162-164
outcome easy to model example, 167-169

synthetic control parallel, 281
treatment easy to model example, 164-167
variations, 169

doubly robust diff-in-diff (DRDID), 260
all together, 261-263
delta outcome model, 260
propensity score model, 260

“Doubly Robust Difference-in-Differences Esti‐
mators” (Sant’Anna and Zhao), 263

Doudchenko, Nick, 317, 318
DR estimator (see doubly robust (DR) estima‐

tion)
dummy variables, 124-126

fixed effects, 131-133
FWL and orthogonalization instead,

131-133
saturated regression model, 127-129

E
econml library for tree-based CATE learners,

230
effect estimation (see causal inference)
effect heterogeneity

Index | 373



about, 179, 207
conditional average treatment effects, 179

cumulative effect, 192
cumulative gain, 194-197
decision making with, 201-204
effect by model quantile, 189-192
estimating, 184
evaluating CATE predictions, 187-188
fklearn causal Python library, 195
identification not a worry, 184
individual treatment effect versus, 183
noisy, 201
personalization, 189
regression with, 183-186
response curve shape, 190

heterogeneous effect over time, 268-272
prediction not the answer, 181-183
target transformation, 197-198
when prediction model is good for effect

ordering, 199
binary outcomes, 200
marginal decreasing returns, 199

employment and minimum wages, 240
“Estimating dynamic treatment effects in event

studies with heterogeneous treatment
effects” (Sun and Abraham), 270

“Estimating Treatment Effects with Causal For‐
ests: An Application” (Athey and Wager),
143

estimation
bias, 18
biased estimator, 19

potential outcome notation, 19
estimates in intervals, 49
expectations, 11
identification process, 23
random and systematic errors, 41
second step in causal inference analysis, 25,

61
standard deviation estimate, 42
standard error of estimates, 41
uncertainty and confidence intervals, 48
variance of estimates to quantify uncer‐

tainty, 40
“An Exact and Robust Conformal Inference

Method for Counterfactual and Synthetic
Controls” (Chernozhukov et al.), 248

exchangeability (see conditional independence
assumption)

exogeneity (see conditional independence
assumption)

expectations, 11
conditional expectations, 11

experiment objectives, 318
experimental design

about, 309
experiment objectives, 318
geo-experiments, 309, 310
instrumental variables, 338

(see also instrumental variables)
noncompliance, 337

(see also noncompliance)
regression discontinuity design

about, 353
assumptions, 355
identification issue, 358
instrumental variables estimate, 357
intention-to-treat effect, 356
local average treatment effect, 356

switchback experiments, 319-321
about, 309
design-based estimation, 324-328
estimating the order of carryover effect,

321-323
optimal switchback design, 328-330
potential outcome of sequences, 321
robust variance, 331-333

synthetic control design, 311-314
random search, 316-318
random search optimization, 317
random set of treated units, 314-316

explaining away an effect, 70
extrapolation of linear regression, 116

F
face-to-face versus online learning, 55
“feature” in causal inference versus ML, 97
Fernández-Loría, Carlos, 201
fixed effects, 131

difference-in-differences with, 243
fklearn causal module, 195
for loops replaced by list comprehension, 43
forecasting causally, 363
forks in graphical models, 68-69
Frisch-Waugh-Lovell (FWL) theorem, 103

Double/Debiased ML version, 223
nonlinear FWL and debiasing, 121
orthogonalization

374 | Index



about, 106
debiasing step, 107
denoising step, 109
final outcome model, 111
standard error for continuous treat‐

ments, 111
standard error of the regression estima‐

tor, 110
summary, 112

regression coefficient formula alternative,
109

regression theory, 104
front door adjustment, 80
functional programming, 153
functions partially applied via @curry, 189
fundamental problem of causal inference, 8

only one potential outcome observable, 8,
14

working around via average treatment
effect, 14

G
Galagate, Douglas, 175
Gans, Joshua, 5
generalized linear models (glm), 172
generalized propensity score (GPS) for contin‐

uous treatments, 169-175
causal-curve Python package, 175

“Generalized Synthetic Control Method: Causal
Inference with Interactive Fixed Effects
Models” (Xu), 306

geo-experiments, 309, 310
glm for generalized linear models, 172
Goldfarb, Avi, 5
Goldsmith-Pinkham, P., 95
Goodman-Bacon, Andrew, 95, 268
Google causalimpact library, 306
Goudet, Olivier, 362
graph queried in Python, 72-75
graphical causal models

about, 61
backdoor paths, 75

backdoor adjustment, 77
beginning point, 62
causality, 61-63
CIA and the adjustment formula, 76
confounders, 69
confounding bias, 80

about confounding, 80

randomization, 82
surrogate confounding, 81

consultants worthwhile example, 65
crash course in

about, 66
causal inference and graphs, 74
chains, 67
colliders, 70
conditioning on a node, 67
explaining away an effect, 70
flow of association cheat sheet, 71
forks, 68-69
immorality, 70
querying a graph in Python, 72-75

DAGs, 63, 65
consultants worthwhile example, 65

DiGraph for querying graphs, 73
front door adjustment, 80
graphviz to draw graphs, 63
identification, 75

example with data, 78-79
positivity assumption, 78
propensity score causal graph, 145
visualizing causal relationships, 63-65

clarifying thinking, 64
no need to encode all variables, 64
nodes as random variables, 64
what is not shown as information, 65

graphviz for graphical causal models, 63
growth in developing countries and higher edu‐

cation, 268
Gutierrez, Pierre, 196
G’erardy, Jean-Yves, 196

H
hat (^) denoting sample estimates, 42
Hazlett, C., 82
Hernán, Miguel A., 83, 254, 363
heterogeneity (see effect heterogeneity; metal‐

earners)
hidden costs, 204
higher education and growth in developing

countries, 268
“Higher Education Expansion, Labor Market,

and Firm Productivity in Vietnam” (Vu and
Vu-Thanh), 268

Hirano, Keisuke, 363
Hünermund, Paul, 24
hypothesis testing, 49

Index | 375



null hypothesis, 51-52

I
identification

as eliminating bias, 24, 27
as eliminating do(.) operator, 12
first step in causal inference analysis, 23, 25,

61
graphical causal models for, 61, 75

example with data, 78-79
identifying the treatment effect, 23

independence assumption, 25
model-based versus design-based, 161

doubly robust estimation for both,
162-164

doubly robust outcome model example,
167-169

doubly robust treatment model example,
164-167

partial identification, 82
randomization with, 25-28
selection bias and, 84

ignorability (see conditional independence
assumption)

Imbens, Guido W., 248
immorality between variables, 70

conditioning on collider, 70
conditioning on effect of collider, 70

impact estimation (see causal inference)
importance sampling and inverse propensity

weighting, 155
income affected by school, 360
independence assumption, 25
independent variables, 67

immorality and colliders, 70
querying a graph in Python, 72-75

indicator function, 114
individual treatment effect (ITE), 12

conditional average treatment effects versus,
183

inference, 38-41
difference-in-differences, 246-248
panel data, 246-248
synthetic control, 295-297

instrumental variables (IV)
analysis

first stage regression, 344
reduced form second step, 345
standard error, 347-348

standard error additional controls,
349-351

two-stage least squares, 346
two-stage least squares by hand, 351
two-stage least squares matrix imple‐

mentation, 351
bias, 348
definition of instrument, 338
estimate in discontinuity design, 357
noncompliance definition, 142

DAG representation, 338
quarter of birth example, 360

“Intelligent Credit Limit Management in Con‐
sumer Loans Based on Causal Inference”
(Miao et al.), 198

intention-to-treat effect (ITTE), 339, 356
“Interpreting OLS Estimands When Treatment

Effects Are Heterogeneous” (Słoczyński), 95
interventions

causal models, 10-12
definition, 10
do(.) operator, 11

individual treatment effect, 12
potential outcomes, 12

inverse propensity weighting (IPW), 149-151
as application of importance sampling, 155
estimator variance, 159
positivity assumption, 159-161

IPW estimator versus linear regression,
161

pseudo-population creation, 149
bias removed by IPW, 156

regression and, 151
when to use IPW versus regression, 161

IPW (see inverse propensity weighting)

K
K folds, 224, 296
K-Nearest-Neighbors (KNN) algorithm, 146

suspicious of, 148
Kalainathan, Diviyan, 362
King, Gary, 148
KNN (see K-Nearest-Neighbors)
Kohavi, Ron, 58
Krueger, Alan, 240
Künzel, S. R., 212

376 | Index



L
“Learning Representations for Counterfactual

Inference” (Shalit et al.), 230
“Learning Under Concept Drift: A Review” (Lu

et al.), 364
LGBMRegressor model, 210
linear regression

A/B tests, 97-100
about, 95

group effects weighted by variance, 131
adjusting with, 100-103

FWL theorem, 103
(see also Frisch-Waugh-Lovell (FWL)

theorem)
confounders adjusted, 143
curse of dimensionality, 97

linear regression against, 97
dataset wage1, 100
debiasing, denoising, and intercept of

regression line, 114
effect heterogeneity from CATE with,

183-186
first stage regression, 344
inverse propensity weighting and, 151
models needed, 96
need to know, 95
neutral controls, 135

bias-variance trade-off, 138-139
noise inducing control, 136

nonlinearities, 117-119
linearizing the treatment, 119-120
nonlinear FWL and debiasing, 121

omitted variable bias, 134-135
as outcome model, 114
positivity and extrapolation, 116
propensity score to adjust for confounders,

146
when to use IPW versus regression, 161

regression coefficient formula alternative,
109

regression for dummies
about independence assumption, 122
conditionally random experiments,

122-124
de-meaning, 131-133
dummy variables, 124-126
fixed effects, 131-133
FWL and orthogonalization, 131-133
saturated regression model, 127-129

variance weighted average of regression,
129-131

regression standard error, 110
continuous treatments, 111

regression theory, 104
multivariate linear regression, 105
single variable linear regression, 105

regularized regression of synthetic control,
286

residuals, 106
de-meaning, 132
FWL breaking down estimation, 107-112
nonlinear FWL and debiasing, 121

statsmodels formula API, 98
list comprehension for sequences, 43
local average treatment effect (LATE), 344

alternative way to estimate, 346
discontinuity design, 356, 358

longevity and wine each day, 21
longitudinal design (see panel data)
loss leader A/B testing example, 33-37
Lu, Jie, 364

M
Machine Learning & Causal Inference: A Short

Course (Athey and Wager; videos), 230
machine learning and causal inference, 5

boosted regression trees, 210
LGBMRegressor model, 210

causal reinforcement learning, 363
evaluating CATE predictions, 187
inverse propensity weighting as importance

sampling, 155
lingo, 97
metalearners, 207

(see also metalearners)
propensity score estimation, 146
self-regularization, 212

estimated treatment effect restricted, 222
“Making Sense of Sensitivity: Extending Omit‐

ted Variable Bias” (Cinelli and Hazlett), 82
management training impact, 141-143

noncompliance, 142
simulated data, 143

marketing and panel data, 236-238
experimental design, 309
online marketing dataset, 275-278

marketing mix modeling (MMM), 133
Mastering Metrics (Angrist and Pischke), 115

Index | 377



matrix implementation of two-stage least
squares, 351

matrix representation of panel data, 238
matrix representation of synthetic control,

278-280
mean

confidence intervals, 44
normal distribution, 45

sum or difference of, 49, 50
mean of x (x ̄), 42
mean squared error (MSE), 197
mediators

in chains, 67, 90
selection bias and conditioning on, 89

membership program as self-selected, 28
metalearners

about, 207
causal inference libraries implementing, 209
continuous treatments, 217

Double/Debiased machine learning,
223-230

S-learners, 218-222
discrete treatments, 208

T-learners, 209-212
X-learners, 212-217

neural net learners, 230
tree-based learners, 230

“Metalearners for Estimating Heterogeneous
Treatment Effects Using Machine Learning”
(Künzel), 212

Miao, H., 198
minimum wages and employment, 240
model-based identification, 161

doubly robust estimation for design-based
also, 162-164
doubly robust outcome model example,

167-169
doubly robust treatment model example,

164-167
Modern Sampling Methods (Hirano and Por‐

ter; webcast), 363
Moivre’s equation, 38-41
monotonicity assumption, 342

N
Net Promoter Score (NPS), 83
networkx DiGraph, 73

about networkx, 73
neural net learners, 230

Nielsen, Richard, 148
noise

noise inducing control, 136
reduction of linear regression, 136

denoising step of orthogonalization, 109
other noise reduction techniques, 136

non-inferiority testing, 52
noncompliance, 337-339

about, 337
definition, 142

DAG representation, 338
extending potential outcomes, 339-342

intention-to-treat effect, 339
instrument identification assumptions,

342-344
exclusion restriction, 342
independence, 342
monotonicity, 342
relevance, 342

instrumental variables
bias of, 348
definition of instrument, 338
first stage regression, 344
reduced form second step, 345
standard error, 347-348
standard error additional controls,

349-351
two-stage least squares, 346
two-stage least squares by hand, 351
two-stage least squares matrix imple‐

mentation, 351
management training impact, 142

“Nonparametric Estimation of Heterogeneous
Treatment Effects: From Theory to Learning
Algorithms” (Curth and Schaar), 230

normal distribution
Central Limit Theorem, 44
distributions other than normal using gen‐

eralized linear models, 172
standard deviation, 45
sum or difference is a normal distribution,

49
T distribution versus, 54
used to approximate other distributions,

171
null hypothesis, 51-52

difference between parameter estimate and,
56

non-inferiority testing, 52

378 | Index



not rejecting is not accepting as true, 53
p-values, 54
power of the test, 56
significance level (α), 52
test statistic, 53

t-statistic, 53
treatment effect equal to zero, 52
Type I error, 52

NumPy square root, 119

O
observational versus randomized, 26
OLS (see ordinary least squares)
omitted variable bias, 134-135
one-hot encoding (see dummy variables)
online learning versus face-to-face, 55
opt-in by customer (see noncompliance)
ordinary least squares (OLS)

confounder adjustment, 102
difference-in-differences with, 242
modeling treatment assignment, 146
papers recently published on, 95

orthogonalization
Frisch-Waugh-Lovell (FWL) theorem

about, 106
debiasing step, 107
denoising step, 109
final outcome model, 111
standard error for continuous treat‐

ments, 111
standard error of the regression estima‐

tor, 110
summary, 112

propensity score and, 146
outcomes

about, 7
association and causation, 7
binary outcomes and effect ordering, 200
causal models, 9
conditioning on effect of and selection bias,

86
conditioning on past outcomes, 254
independent from treatment, 32
potential outcomes, 12

A/B testing example, 33-37
assumption of consistency with treat‐

ment, 13
assumption violations fixed, 14

average treatment effect on the treated,
15

bias making association different from
causation, 19

factual versus counterfactual, 12
fundamental problem of causal infer‐

ence, 14
independence assumption, 25, 32
linear regression against dimensionality

problem, 97
linear regression for imputation, 114

overlap (see positivity assumption)

P
p-values, 54

calculating, 54
confidence intervals and, 55

pandas
.assign() method, 105
dummy variables, 125
groupby with size aggregation, 41

panel data
about, 235, 236

imputing missing data, 238
difference-in-differences, 239

(see also difference-in-differences)
effect spillover across time periods, 251

spatial spillover, 251
inference, 246-248
marketing panel data, 236-238
matrix representation, 238
parallel trends assumption, 249-251
sequential decision making, 362
staggered adoption, 263-268

about, 362
synthetic control, 275

(see also synthetic control)
parallel processing

resampling run in parallel, 152
parallel trends assumption, 249-251
partial identification, 82
partial() function, 153
patsy library, 99
Pearl, Judea, 24
personalization

conditional average treatment effect for, 15,
189

effect heterogeneity, 179
(see also effect heterogeneity)

Index | 379



metalearners, 207
(see also metalearners)

Pischke, Jörn-Steffen, 115
Plato on the Forms, 43
Porter, Jack, 363
positivity assumption, 78

bias-variance trade-off, 159-161
IPW versus regression, 161

potential outcomes, 12
assumption of consistency, 13

violations fixed, 14
average treatment effect, 14
average treatment effect on the treated, 15
bias making association different from cau‐

sation, 19
factual versus counterfactual, 12
fundamental problem of causal inference,

14
independence assumption, 25, 32

A/B testing example, 33-37
linear regression against dimensionality

problem, 97
linear regression for imputation, 114

power (1 – β), 56-57
ppf function (scipy), 46
Prediction Machines (Agrawal, Gans, and

Goldfarb), 5
prerequisites for this book, xiii
price discrimination, 186
private or public school and income, 115
propensity weighting

about, 141
bias-variance trade-off, 158

positivity assumption, 159-161
positivity assumption, IPW versus

regression, 161
generalized propensity score for continuous

treatments, 169-175
causal-curve Python package, 175

identification, model-based versus design-
based, 161
doubly robust estimation for both,

162-164
doubly robust outcome model example,

167-169
doubly robust treatment model example,

164-167
management training impact, 141-143

noncompliance, 142

propensity score, 144
about confounders, 144, 146
causal graph, 145
estimating, 145
estimating with machine learning, 146
inverse propensity weighting, 149-151
inverse propensity weighting and regres‐

sion, 151
inverse propensity weighting estimator

variance, 159
matching estimator, 146-148
matching estimator bias, 148
matching estimator problems, 148
orthogonalization and, 146
stabilized propensity weights, 155-156
variance and weights, 154
variance of inverse propensity weighting,

151-154
pseudo-populations

inverse propensity weighting, 149
inverse propensity weighting removing

bias, 156
stabilized propensity weights, 155

regression adjusting for confounders, 143
when to use IPW versus regression, 161

selection bias control, 157
Provost, Foster, 201
pseudo-populations

inverse propensity weighting, 149
how IPW removes bias, 156

stabilized propensity weights, 155
public or private school and income, 115

Q
quantiles for treatment effects, 189-192
quarter of birth example of instrumental vari‐

ables, 360

R
R-learner, 223-230
R-Loss, 225
random errors, 41

uncertainty and, 41
randomization

about, 26
conditionally random experiments, 122-124

Beta sampling, 123
keeping close to completely random, 123

identification with, 25-28

380 | Index



observational versus, 26
randomized experiments

A/B testing example, 33-37
about, 31
as benchmark or ideal experiment, 37
brute force independence, 31-33
checking randomization, 35-37
conditionally random (see conditionally

random experiments)
visualizing causal relationships, 63

randomized control trials (RCT)
about, 35
as benchmark or ideal experiment, 37
brute force independence, 31-33
checking randomization, 35-37
COVID-19 vaccine effectiveness, 48
loss leader A/B testing example, 33-37

regression (see linear regression)
regression coefficient formula alternative, 109
regression discontinuity design (RDD)

about, 353
assumptions, 355
identification issue, 358
instrumental variables estimate, 357
intention-to-treat effect, 356
local average treatment effect, 356

regression standard error, 110
continuous treatments, 111

regularization by ML algorithms, 212
estimated treatment effect restricted, 222

reinforcement learning contextual bandits, 154
repeated cross-sectional data, 235
response curve shape, 190
Robins, James M., 83, 169, 254, 363
Roth, Jonathan, 250

S
S-learners, 218-222

counterfactual predictions, 218, 220
self-regularization by ML algorithms, 212

estimated treatment effect restricted, 222
treatment biased toward zero, 222

sample size
calculation, 57
power, 56-57
random and systematic errors, 41
small sample size and inference, 38-41

Moivre’s equation, 38-41
Sant’Anna, Pedro, 250, 263, 272

saturated regression model, 127-129
Schaar, Mihaela van der, 230
school effect on income, 360
scipy ppf function, 46
SE (see standard error of the mean)
selection bias, 83-86

about, 83
adjusting for, 87-89
causal identification, 84
conditioning on a collider, 83-86
conditioning on a mediator, 89
conditioning on effect of outcome, 86
propensity score weighting controlling, 157
survival analysis hidden bias, 88

self-regularization by ML algorithms, 212
estimated treatment effect restricted, 222

self-selected-customer data, 28
sensitivity analysis, 82
sequences via list comprehension, 43
sequential decision making, 362
sequential ignorability, 254
Shalit, Uri, 230
significance level (α), 52
Simchi-Levi, David, 333
Simpson’s Paradox, 21
sklearn

cross_val_predict function, 224
output of 0 or 1 to probability, 152
variance of inverse propensity weighting,

151
Słoczyński, Tymon, 95
stable unit of treatment value assumption

(SUTVA), 14
across time periods via no anticipation

assumption, 251
violations fixed, 14

staggered adoption with difference-in-
differences, 263-268
about, 362
covariates, 272
heterogeneous effect over time, 268-272

standard deviation (σ)
confidence interval calculation, 45, 46

ppf function (scipy), 46
estimate of (σ̂), 42
Moivre’s equation, 38
normal distribution, 45

sum or difference of as standard error,
50

Index | 381



standard error of estimates, 41
confidence intervals, 42-49

standard error of the mean (SE; “standard
error”)
confidence intervals, 44
instrumental variable analysis, 347-348

additional controls, 349-351
for inverse propensity weighting, 151
Moivre’s equation, 38
sample size calculation, 57
standard deviation of sum or difference of

normal distributions, 50
standard error of the regression estimator, 110

continuous treatments, 111
statistical significance

confidence testing, 56
hypothesis testing, 49
standard error of estimates, 41

statistics defined, 41
statsmodels

formula API, 98, 143
logistic regression, 145
NumPy square root, 119
sklearn for variance of IPW, 151

Stock, James H., 364
stratified experiments (see conditionally ran‐

dom experiments)
strict exogeneity assumption, 252-254

no carryover effect, 254
no feedback, 253
no lagged dependent variable, 254
no time varying confounders, 252
sequential ignorability, 254

structural causal models (SCM), 62
Sun, Liyang, 270
survival analysis hidden bias, 88
SUTVA (see stable unit of treatment value

assumption)
switchback experiments, 319-321

about, 309
design-based estimation, 324-328
estimating the order of carryover effect,

321-323
optimal switchback design, 328-330
potential outcome of sequences, 321
robust variance, 331-333

synthetic control
about, 275, 280
assumptions, 287

average of synthetic controls, 282
canonical synthetic control, 284-287
causalimpact library, 306
with covariants, 287-291
debiasing, 291-295
difference-in-differences

about, 298
estimating time weights, 301
original synthetic DID estimator, 304
recasting synthetic control estimator,

298-300
refresher on DID, 298
running DID, 303-305

as horizontal regression, 280-284
generic horizontal regression, 291
potential outcome modeling parallel, 281
regularized regression, 286

inference, 295-297
matrix representation, 278-280
online marketing dataset, 275-278

synthetic control experimental design, 311-314
random search, 316-318

optimization, 317
random set of treated units, 314-316

“Synthetic Controls for Experimental Design”
(Abadie and Zhao), 317

“Synthetic Design: An Optimization Approach
to Experimental Design with Synthetic Con‐
trols” (Doudchenko et al.), 318

“Synthetic Difference in Differences” (Arkhan‐
gelsky), 304

systematic errors, 41
uncertainty and, 41

T
T distribution for t-statistic, 54
T-learners, 209-212
t-statistic, 53

p-value calculation, 53
“A T-Test for Synthetic Controls” (Chernozhu‐

kov), 297
“target” in causal inference versus ML, 97
target transformation, 197-198
test statistic for rejecting null hypothesis, 53

T versus normal distribution, 54
t-statistic, 53

time
Bayesian structural time-series models, 306
causal forecasting, 363

382 | Index



difference-in-differences
effect dynamics over time, 255-257
heterogeneous effect over time, 268-272
multiple time periods, 244-246
with outcome growth, 240

panel data, 235, 236
pooled cross-section, 235
repeated cross-sectional data, 235
sequential decision making, 362
SUTVA across time via no anticipation

assumption, 251
synthetic control

Bayesian structural time-series models,
306

weights, 301
Time-Series Econometrics (Stock and Watson;

webcast), 364
toolz library for curry, 189
treatment

about, 7
notation, 7

association and causation, 7
assumption of potential outcome consistent

with, 13
violations fixed, 14

average treatment effect, 14
(see also average treatment effect)
adjustment formula, 77
positivity assumption of treatment mem‐

bers, 78
average treatment effect on the treated, 15

causal quantities example, 16-18
difference-in-differences over time,

255-257
panel data, 238

binary treatments
effect heterogeneity, 180

(see also effect heterogeneity)
metalearners, 208
metalearners, S-learners, 218-222
metalearners, T-learners, 209-212
potential outcome notation, 13
propensity score, 141

(see also propensity weighting)
regression for potential outcome, 114
saturated regression model, 127-129

categorical treatment T-learners, 209-212
causal models, 9
conditional average treatment effects, 15

(see also conditional average treatment
effects)

continuous treatments
causal-curve Python package, 175
continuous variables with zero probabil‐

ity, 170
effect heterogeneity, 180

(see also effect heterogeneity)
generalized propensity score for,

169-175
literature on, 175
metalearners, 217-230
metalearners, Double/Debiased ML,

223-230
metalearners, S-learners, 218-222
slope of regression line, 114
standard error formula, 111

discrete treatments
effect heterogeneity, 180

(see also effect heterogeneity)
metalearners, 208
metalearners, T-learners, 209-212
metalearners, X-learners, 212-217
propensity score, 141

(see also propensity weighting)
effect heterogeneity, 179

(see also effect heterogeneity)
fundamental problem of causal inference, 8

only one potential outcome observable,
8, 14

working around via average treatment
effect, 14

identifying the treatment effect, 23
independence assumption, 25, 32

A/B testing example, 33-37
randomizing the treatment, 33

marginally decreasing treatment response,
199

noncompliance, 142
management training impact, 142

optimal either none or maximum allowed,
204

positivity assumption of treatment mem‐
bers, 78

treatment effect on the treated
association definition, 20, 31
average treatment effect on the treated, 15

tree-based learners, 230
two-stage least squares (2SLS), 346

Index | 383



by hand, 351
matrix implementation, 351

“Two-Way Fixed Effects, the Two-Way Mund‐
lak Regression, and Difference-in-
Differences Estimators” (Wooldridge), 270

Type I error, 52

U
U for unobserved variables, 63

consultants worthwhile example, 66
graphviz displaying, 63

u for variables outside the causal model, 9
additional variables modeled, 9

uncertainty
confidence intervals, 42-49

explained, 48
hypothesis testing, 49

null hypothesis, 51-52
random and systematic errors, 41
variance of estimates to quantify, 40

uniform and Beta distributions, 123
unit of analysis, 7
Using Synthetic Controls: Feasibility, Data

Requirements, and Methodological Aspects
(Abadie), 287

V
vaccine prioritization, 200
variables

additional variables modeled, 9
colliders, 70

conditioning on, 70
conditioning on effect of collider, 70
selection bias, 83

conditional average treatment effects, 15
continuous variables with zero probability,

170
dependent, 67
dummy variables, 124-126

FWL and orthogonalization instead,
131-133

saturated regression model, 127-129
immorality, 70

conditioning on colliders, 70
conditioning on effect of collider, 70

independent, 67
no need to encode all, 64
omitted variable bias, 134-135
querying a graph in Python, 72-75

surrogate variables, 81
U for unobserved, 63

consultants worthwhile example, 66
graphviz displaying, 63

u for variables outside the causal model, 9
additional variables modeled, 9

variance
bias-variance trade-off, 138-139

positivity assumption, 159-161
propensity scores, 158
variables included in regression, 135

conditionally random experiments mini‐
mizing, 124

difference-in-differences time periods, 247
of estimates, 40

variance of sum or difference of normal
distributions, 49

of inverse propensity weighting, 151
IPW estimator, 159

neutral controls and, 135
regression as variance weighted average,

129-131
variance of sum or difference of normal dis‐

tributions, 49
standard deviation, 50

Vietnam higher education and wages, 268
virtual colliders, 86
visualizing causal relationships, 63-65

(see also graphical causal models)
Vu, Khoa, 268
Vu-Thanh, Tu-Anh, 268

W
wage1 dataset (Wooldridge), 100
Wager, Stefan , 143, 230
Wainer, Howard, 38, 39
Watson, Mark W., 364
weights

causal inference versus ML lingo, 97
generalized propensity score for continuous

treatment, 169-175
inverse propensity weighting, 149

regression and IPW, 151
variance of IPW estimator, 159

regression weights proportional to variance,
129-131
group effects weighted by variance, 131
saturated regression model, 128

size of group in weighted average

384 | Index



adjusting for selection bias, 87
conditional independence assumption,

77
evaluating causal models, 198
identification example, 79
saturated regression model, 127, 129

stabilized propensity weights, 155-156
target variable noise, 197
time in synthetic control, 301
variance in propensity score estimator and,

154
“When Is Parallel Trends Sensitive to Func‐

tional Form?” (Roth and Sant’Anna), 250
“When Should You Adjust Standard Errors for

Clustering” (Abadie, Athey, Imbens, and
Wooldridge), 248

“Why Propensity Scores Should Not Be Used
for Matching” (King and Nielsen), 148

wine each day and longevity, 21
Wooldridge, Jeffrey M., 100, 248, 270

X
x̄ as mean of x, 42
X-learners, 212-217

domain adaptation learner, 214-217
Xu, Yiqing, 254, 306

Z
Zhao, Jun, 263, 317, 333

Index | 385



About the Author
Matheus Facure is an economist and senior data scientist at Nubank, the biggest Fin‐
Tech company outside Asia. He has successfully applied causal inference in a wide
range of business scenarios, from automated and real-time interest and credit deci‐
sion making, to cross-sell emails and optimizing marketing budgets. He is also the
author of Causal Inference for the Brave and True, a popular book that aims to make
causal inference mainstream in a lighthearted, yet rigorous way.

Colophon
The animal on the cover of Causal Inference in Python is a green forest lizard (Calotes
calotes). The Latin name comes from the Greek word kalos, which means pretty or
gracile. Calotes, the genus, is characterized by the ability to change color in certain
conditions. For example, the male green forest lizard’s head and throat turn bright red
during the breeding season. They are usually a slightly yellow or brown shade of
green with stripes of white or dark green across their backs.

Green forest lizards are considered medium to large among lizards with an average
length of 19.5 to 25.5 inches. This estimate includes the tail, which is notably long
and slender.

These lizards are found only in the biodiverse forests of Sri Lanka and of India’s West‐
ern Ghats mountain range and Shevaroy Hills. Parts of their habitat are protected,
and hundreds of their neighboring species are threatened. Green forest lizard popula‐
tions are stable in this pocket of the world. Many of the animals on O’Reilly’s covers
are endangered; all of them are important to the world.

The cover illustration is by Karen Montgomery, based on a black and white engraving
from Natural History of Ceylon. The cover fonts are Gilroy Semibold and Guardian
Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Con‐
densed; and the code font is Dalton Maag’s Ubuntu Mono.



Learn from experts.  
Become one yourself.
Books | Live online courses   
Instant answers | Virtual events 
Videos | Interactive learning

Get started at oreilly.com. 

©
20

23
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k 

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

.  1
75

  7
x9

.19
75

https://www.oreilly.com/

	Cover
	Copyright
	Table of Contents
	Preface
	Prerequisites
	Outline
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Part I. Fundamentals
	Chapter 1. Introduction to Causal Inference
	What Is Causal Inference?
	Why We Do Causal Inference
	Machine Learning and Causal Inference
	Association and Causation
	The Treatment and the Outcome
	The Fundamental Problem of Causal Inference
	Causal Models
	Interventions
	Individual Treatment Effect
	Potential Outcomes
	Consistency and Stable Unit Treatment Values
	Causal Quantities of Interest
	Causal Quantities: An Example

	Bias
	The Bias Equation
	A Visual Guide to Bias

	Identifying the Treatment Effect
	The Independence Assumption
	Identification with Randomization

	Key Ideas

	Chapter 2. Randomized Experiments and Stats Review
	Brute-Force Independence with Randomization
	An A/B Testing Example
	The Ideal Experiment
	The Most Dangerous Equation
	The Standard Error of Our Estimates
	Confidence Intervals
	Hypothesis Testing
	Null Hypothesis
	Test Statistic

	p-values
	Power
	Sample Size Calculation
	Key Ideas

	Chapter 3. Graphical Causal Models
	Thinking About Causality
	Visualizing Causal Relationships
	Are Consultants Worth It?

	Crash Course in Graphical Models
	Chains
	Forks
	Immorality or Collider
	The Flow of Association Cheat Sheet
	Querying a Graph in Python

	Identification Revisited
	CIA and the Adjustment Formula
	Positivity Assumption
	An Identification Example with Data
	Confounding Bias
	Surrogate Confounding
	Randomization Revisited

	Selection Bias
	Conditioning on a Collider
	Adjusting for Selection Bias
	Conditioning on a Mediator

	Key Ideas


	Part II. Adjusting for Bias
	Chapter 4. The Unreasonable Effectiveness of Linear Regression
	All You Need Is Linear Regression
	Why We Need Models
	Regression in A/B Tests
	Adjusting with Regression

	Regression Theory
	Single Variable Linear Regression
	Multivariate Linear Regression

	Frisch-Waugh-Lovell Theorem and Orthogonalization
	Debiasing Step
	Denoising Step
	Standard Error of the Regression Estimator
	Final Outcome Model
	FWL Summary

	Regression as an Outcome Model
	Positivity and Extrapolation
	Nonlinearities in Linear Regression
	Linearizing the Treatment
	Nonlinear FWL and Debiasing

	Regression for Dummies
	Conditionally Random Experiments
	Dummy Variables
	Saturated Regression Model
	Regression as Variance Weighted Average
	De-Meaning and Fixed Effects

	Omitted Variable Bias: Confounding Through the Lens of Regression
	Neutral Controls
	Noise Inducing Control
	Feature Selection: A Bias-Variance Trade-Off

	Key Ideas

	Chapter 5. Propensity Score
	The Impact of Management Training
	Adjusting with Regression
	Propensity Score
	Propensity Score Estimation
	Propensity Score and Orthogonalization
	Propensity Score Matching
	Inverse Propensity Weighting
	Variance of IPW
	Stabilized Propensity Weights
	Pseudo-Populations
	Selection Bias
	Bias-Variance Trade-Off
	Positivity

	Design- Versus Model-Based Identification
	Doubly Robust Estimation
	Treatment Is Easy to Model
	Outcome Is Easy to Model

	Generalized Propensity Score for Continuous Treatment
	Key Ideas


	Part III. Effect Heterogeneity and Personalization
	Chapter 6. Effect Heterogeneity
	From ATE to CATE
	Why Prediction Is Not the Answer
	CATE with Regression
	Evaluating CATE Predictions
	Effect by Model Quantile
	Cumulative Effect
	Cumulative Gain
	Target Transformation
	When Prediction Models Are Good for Effect Ordering
	Marginal Decreasing Returns
	Binary Outcomes

	CATE for Decision Making
	Key Ideas

	Chapter 7. Metalearners
	Metalearners for Discrete Treatments
	T-Learner
	X-Learner

	Metalearners for Continuous Treatments
	S-Learner
	Double/Debiased Machine Learning

	Key Ideas


	Part IV. Panel Data
	Chapter 8. Difference-in-Differences
	Panel Data
	Canonical Difference-in-Differences
	Diff-in-Diff with Outcome Growth
	Diff-in-Diff with OLS
	Diff-in-Diff with Fixed Effects
	Multiple Time Periods
	Inference

	Identification Assumptions
	Parallel Trends
	No Anticipation Assumption and SUTVA
	Strict Exogeneity
	No Time Varying Confounders
	No Feedback
	No Carryover and No Lagged Dependent Variable

	Effect Dynamics over Time
	Diff-in-Diff with Covariates
	Doubly Robust Diff-in-Diff
	Propensity Score Model
	Delta Outcome Model
	All Together Now

	Staggered Adoption
	Heterogeneous Effect over Time
	Covariates

	Key Ideas

	Chapter 9. Synthetic Control
	Online Marketing Dataset
	Matrix Representation
	Synthetic Control as Horizontal Regression
	Canonical Synthetic Control
	Synthetic Control with Covariants
	Debiasing Synthetic Control
	Inference
	Synthetic Difference-in-Differences
	DID Refresher
	Synthetic Controls Revisited
	Estimating Time Weights
	Synthetic Control and DID

	Key Ideas


	Part V. Alternative Experimental Designs
	Chapter 10. Geo and Switchback Experiments
	Geo-Experiments
	Synthetic Control Design
	Trying a Random Set of Treated Units
	Random Search

	Switchback Experiment
	Potential Outcomes of Sequences
	Estimating the Order of Carryover Effect
	Design-Based Estimation
	Optimal Switchback Design
	Robust Variance

	Key Ideas

	Chapter 11. Noncompliance and Instruments
	Noncompliance
	Extending Potential Outcomes
	Instrument Identification Assumptions
	First Stage
	Reduced Form
	Two-Stage Least Squares
	Standard Error
	Additional Controls and Instruments
	2SLS by Hand
	Matrix Implementation

	Discontinuity Design
	Discontinuity Design Assumptions
	Intention to Treat Effect
	The IV Estimate
	Bunching

	Key Ideas

	Chapter 12. Next Steps
	Causal Discovery
	Sequential Decision Making
	Causal Reinforcement Learning
	Causal Forecasting
	Domain Adaptation
	Closing Thoughts


	Index
	About the Author
	Colophon

